Precipitation Infiltration Change in Beijing Plain in the Context of Urbanization
-
摘要: 结合WetSpass模型与地理信息系统(geographic information system,GIS)、遥感(remote sense,RS)技术分析了城市扩张引起的土地利用类型变化对北京平原区降水入渗补给量的影响.在估算出1982年和2007年降水入渗补给量的基础上,将2007年土地利用类型还原成1982年的情景重新估算,利用转移矩阵分析两年土地利用类型的相互转化关系,同时,基于GIS空间数据统计功能,计算出不同土地利用类型下的地下水补给量.结果表明,1982年至2007年,研究区内水浇地减少874 km2,其中517 km2转变为城镇建设用地.相对于1982年,2007年城镇建设用地扩张了831 km2,区内降水入渗补给量减少约3 000万m3.研究成果可以为北京平原区的地下水资源保护及土地资源配置提供较为科学的参考.
-
关键词:
- 城市化 /
- 降雨入渗补给 /
- WetSpass模型 /
- 土地利用
Abstract: The WetSpass model is used to analyze the impact of urbanization on precipitation infiltration recharge in Beijing Plain combined with the technology of GIS (geographic information system) and RS (remote sense) in this paper. Based on the simulated precipitation infiltration in 1982 and 2007, the influence of land use changing on the precipitation infiltration is quantitatively analyzed by assuming the land-use type in 2007 was the same as that in 1982, and re-running WetSpass model with other input data in 2007. The transfer matrix is used to analyze the mutual transformation relationship of land-use types in the above-mentioned two years, and the statistical function of GIS is used to calculate the groundwater recharge under different land-use types. Results show that the area of irrigable land decreased by 874 km2 from 1982 to 2007, among which 517 km2 turned to the central urban land. The central urban area increased by about 831 km2. The increasing urban area and the decreasing crop area eventually lead to the reduction of the average groundwater recharge. The groundwater recharge decreased by about 3×107 m3 in 2007 compared with the value under the simulated condition. The precipitation infiltration changed obviously in the region around Chaoyang and Fengtai districts characterized by significant urban expansion. This study can be a scientific reference for the groundwater resources protection and city layout of Beijing Plain.-
Key words:
- urbanization /
- precipitation infiltration /
- WetSpass model /
- land use
-
图 4 2007年模拟的降水入渗补给量(a)和2007年实际的降水入渗补给量(b)
图 4a的假设条件:土地利用类型采用1982年的,其他条件保持2007年的实际情况
Fig. 4. Simulated groundwater recharge under land use of 1982(a) and 2007(b)
表 1 北京平原区1982—2007年土地利用类型面面积转移矩阵(km2)
Table 1. Transfer matrix of land use type areas from 1982 to 2007
落叶针叶林 落叶阔叶林 针阔混交林 灌丛 灌丛草地 水田 水浇地 旱地 城镇建设用地 农村聚落 内陆水体 河湖滩地 裸地 落叶针叶林 65.38 0.00 0.00 0.00 1.27 0.00 6.78 31.98 0.00 0.04 0.00 0.02 0.00 落叶阔叶林 0.71 169.63 0.00 0.00 1.51 0.00 14.66 8.00 0.00 0.12 0.59 3.27 0.00 针阔混交林 0.01 0.00 4.92 0.00 0.91 0.00 2.50 0.03 0.00 0.00 0.00 0.00 0.00 灌丛 0.00 0.04 0.00 5.16 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 灌丛草地 0.00 0.00 0.00 0.06 35.45 0.00 0.30 0.12 0.00 0.00 0.00 0.00 0.00 水田 0.00 0.18 0.00 0.00 0.28 182.27 0.96 2.08 0.03 0.14 0.28 1.10 0.00 水浇地 0.23 9.70 0.00 0.00 1.88 0.36 2 984.33 6.91 1.37 1.17 5.49 1.48 0.00 旱地 0.00 0.24 0.00 0.00 0.00 0.09 1.59 60.70 0.05 1.84 0.20 0.48 0.00 城镇建设用地 4.96 12.68 0.00 0.09 2.13 24.58 517.42 108.06 543.67 159.61 5.79 0.96 0.00 农村聚落 2.18 2.57 0.00 0.00 4.96 20.62 306.99 20.95 2.29 568.39 1.13 0.52 0.00 内陆水体 0.18 0.27 0.00 0.00 0.63 2.66 43.09 5.61 0.00 0.09 79.32 4.01 0.00 河湖滩地 0.00 0.03 0.00 0.00 1.16 0.00 2.80 0.51 0.00 0.23 1.50 84.71 0.00 裸地 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 表 2 不同土地利用类型条件下降水入渗补给量变化
Table 2. Change of precipitation infiltration from assuming environment to actual environment in 2007
土地利用类型 实际的平均降水入渗补给量(mm) 实际的降水入渗补给总量(104 m3) 模拟的平均降水入渗补给量(mm) 模拟的降水入渗补给总量(104 m3) 变化量(104 m3) 落叶针叶林 7.07 74.98 6.33 46.56 28.41 落叶阔叶林 10.08 199.13 9.90 192.34 6.80 针阔混交林 6.74 5.64 7.85 3.86 1.79 灌丛 35.48 18.31 35.64 18.58 -0.27 灌丛草地 105.35 374.15 95.31 473.70 -99.55 水田 73.73 1 383.90 69.31 1 603.42 -219.52 水浇地 76.83 23 276.75 77.03 30 072.32 -6 795.57 旱地 78.26 509.64 83.64 2 047.03 -1 537.39 城镇建设用地 45.11 6 211.95 38.68 2 109.97 4 101.99 农村聚落 78.31 7 203.09 78.70 5 615.52 1 587.57 内陆水体 0.00 0.00 0.00 0.00 0.00 河湖滩地 115.50 1 045.88 110.14 1 060.71 -14.83 裸地 126.38 1.88 126.38 1.88 0.00 -
[1] Beijing Geology and Mineral Exploration Bureau, 2008. Beijing Groundwater. China Land Press, Beijing(in Chinese). [2] Gao, S.Y., 2004. Research on the Recharge of Groundwater Affected by Urban Expansion in Jinan City(Dissertation). Shandong Normal University, Shandong, 24-31 (in Chinese with English abstract). [3] Guo, G.X., Xin, B.D., Zhu, L., et al., 2012. Multi-Scale Analysis of Annual Precipitation in Beijing Area from 1724 to 2009 Based on Wavelete Transformation. Journal of China Hydrology, 32(3): 29-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWZZ201203005.htm [4] Lin, L., Liang, T.H., Wang, X.X., 2010. Evaluation on Precipitation Infiltration Replenishment of Songnen Basin based on WetSpass Model. Water Resources & Hydropower of Northeast, 7: 23-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBSL201007010.htm [5] Lin, L., Yin, Y.J., Xie, Y.N., 2011. Study on Rainfall Infiltration Recharge under Conditions of Difference Land Use and Cover in Songnen Basin. Water Resources & Hydropower of Northeast, 1: 35-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DBSL201101016.htm [6] Liu, F., 2010. Study on the Characteristics and Causes for Urban Sprawl in Beijing. Beijing Jiaotong University, Beijing, 21-33(in Chinese). [7] Nachtergaele, E., Veldhuizen, H.V., Luc Verelst, L., 2009. Harmonized World Soil Database (Version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. [8] OuYang, Z.Y., Wang, R.S., Li, W.F. et al., 2005. Ecological Planning on Greenbelt Surrounding Mega City, Beijing. Acta Ecologica Sinica, 25(5): 965-971(in Chinese with English abstract). http://www.oalib.com/paper/1398905 [9] Pan, Y., Gong, H.L., Li, X.J., et al., 2011. Application of Valiantzas Approach to Estimating Reference Evapotranspiration in China. Advances in Water Science, 22(1), 30-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201101004.htm [10] Pan, Y., Gong, H.L., Zhou, D.M., et al., 2011. Impact of Land Use Change on Groundwater Recharge in Guishui River Basin, China. Geographical Science, 21(6): 734-743. doi: 10.1007/s11769-011-0508-7 [11] Pan, Y., Zhu, L. Du, L.F., et al., 2012. Estimation of Rainfall Infiltration in Beijing Plain Using WetSpass. Journal of Resource Research, 1: 245-250(in Chinese with English abstract). http://www.oalib.com/paper/287945 [12] Paul, M.J., 2006. Impact of Land-Use Patterns on Distributed Groundwater Recharge and Discharge—A Case Study of Western Jilin, China. Chinese Geographical Science, 16(3): 229-235. doi: 10.1007/s11769-006-0229-5 [13] Tilahun, K., Merkel, B.J., 2009. Estimation of Groundwater Recharge Using a GIS-based Distributed Water Balance Model in Dire Dawa. Ethiopia. Hydrogeology Journal, 17(6): 1443-1457. doi: 10.1007/s10040-009-0455-x [14] Wang, J., Cai, H.J., Li, H.X., et al., 2006. Study and Evaluation of the Calculation Methods of Reference Crop Evapotranspiration in Solar-Heated Greenhouse. Journal of Irrigation and Drainag, 25(6): 11-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS200606002.htm [15] Wang, S.Q., Song, X.F., Xiao, G.Q., et al., 2009. Appliance of Oxygen and Hydrogen Isotope in the Process of Precipitation Infiltration in the Shallow Groundwater Areas of North China Plain. Advances in Water Science, 20(4): 495-501(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200904007.htm [16] Wang, X.Q., Wang, Z.F., Qi, Y.B., et al., 2007. Preliminary Inspect about the Effect of Urbanization on Precipitation Distribution in Beijing Area. Climatic and Environmental Research, 12(4): 481-495(in Chinese with English abstract). [17] Yu, K.J., Wang, S.S., Li, D.H., et al., 2009. The Function of Ecological Security Patterns as an Urban Growth Framework in Beijing. Acta Ecologica Sinica, 29(3): 1189-1204(in Chinese with English abstract). http://www.oalib.com/paper/1401301 [18] Yu, K.N., 2001. The Impact of Urbanization on Groundwater Recharge: A Case Study of Shijiazhuang City. Acta Geoscientia Sinica, 22(2): 175-178 (in Chinese with English abstract). [19] Zhang, B., Guo, Z.R., Gao, A.G., et al., 2012. Estimation Groundwater Discharge into Minjiang River Estuary Based on Stable Isotopes Deuterium and Oxygen-18. Advances in Water Science, 23(4): 530-539 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201204013.htm [20] 北京市地质矿产勘查开发局, 2008. 北京地下水. 北京: 中国大地出版社. [21] 高守英, 2004. 济南市城市扩展对地下水补给的影响研究(硕士学位论文). 山东: 山东师范大学, 24-31. [22] 郭高轩, 辛宝东, 朱琳, 等, 2012. 基于小波变换的北京地区1724-2009年降水量多尺度分析. 水文, 32(3): 29-33. doi: 10.3969/j.issn.1000-0852.2012.03.005 [23] 林岚, 梁团豪, 王晓昕, 2010. 采用WetSpass模型评价松嫩盆地降水入渗补给量. 东北水利水, 7: 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DBSL201007010.htm [24] 林岚, 殷玉杰, 谢艾楠, 2011. 不同土地利用/覆被条件下松嫩盆地降水入渗补给量研究. 东北水利水电, 1: 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DBSL201101016.htm [25] 刘芳, 2010. 北京城市蔓延的特征及成因分析(硕士学位论文). 北京: 北京交通大学, 21-33. [26] 欧阳志云, 王如松, 李伟峰, 等, 2005. 北京市环城绿化隔离带生态规划. 生态学报, 25(5): 965-971. doi: 10.3321/j.issn:1000-0933.2005.05.004 [27] 潘云, 宫辉力, 李小娟, 等, 2011. 蒸散发模拟的Valiantzas方法在中国的应用. 水科学进展, 22(1): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201101004.htm [28] 潘云, 朱琳, 杜鹭飞, 等, 2012. 基于WetSpass模型的北京平原区降水入渗量估算. 水资源研究, 1: 245-250. [29] 王健, 蔡焕杰, 李红星, 等, 2006. 日光温室作物蒸发蒸腾量的计算方法研究及其评价. 灌溉排水学报, 25(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200606002.htm [30] 王仕琴, 宋献方, 肖国强, 等, 2009. 基于氢氧同位素的华北平原降水入渗过程. 水科学进展, 20(4): 495-501. doi: 10.3321/j.issn:1001-6791.2009.04.007 [31] 王喜全, 王自发, 齐彦斌, 等, 2007. 城市化与北京地区降水分布变化初探. 气候与环境研究, 12(4): 481-495. doi: 10.3969/j.issn.1006-9585.2007.04.002 [32] 俞孔坚, 王思思, 李迪华, 等, 2009. 北京市生态安全格局及城市增长预景. 生态学报, 29(3): 1189-1204. doi: 10.3321/j.issn:1000-0933.2009.03.015 [33] 于开宁, 2001. 城市化对地下水补给的影响——以石家庄市为例. 地球学报, 22(2): 175-178. doi: 10.3321/j.issn:1006-3021.2001.02.016 [34] 章斌, 郭占荣, 高爱国, 等, 2012. 用氢氧同位素评价闽江河口区地下水输入. 水科学进展, 23(4): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201204013.htm