• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同成因类型煤型气地球化学特征及其判识意义

    鲍园 韦重韬 王超勇

    鲍园, 韦重韬, 王超勇, 2013. 不同成因类型煤型气地球化学特征及其判识意义. 地球科学, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
    引用本文: 鲍园, 韦重韬, 王超勇, 2013. 不同成因类型煤型气地球化学特征及其判识意义. 地球科学, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
    BAO Yuan, WEI Chong-tao, WANG Chao-yong, 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
    Citation: BAO Yuan, WEI Chong-tao, WANG Chao-yong, 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101

    不同成因类型煤型气地球化学特征及其判识意义

    doi: 10.3799/dqkx.2013.101
    基金项目: 

    国家自然科学基金重点项目 41030422

    国家科技重大专项 2011ZX05060-005

    详细信息
      作者简介:

      鲍园(1983-), 男, 博士后, 主要从事煤层气地质与成藏研究.E-mail: baoyuan8384@163.com

    • 中图分类号: P597

    Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses

    • 摘要: 通过数理统计前人公开发表的国内外21个盆地或地区的324组煤型气地化数据, 分析不同成因类型煤型气地层分布和稳定碳、氢同位素组成及空间分布特征, 提出多个煤型气成因类型判识图版, 并以实例论证这些图版的可行性.研究结果表明: 与煤层相关的生物成因气不同于常规生物气, 最显著区别在于前者δ13C(CH4)上限值低, 即生物成因气δ13C(CH4)<-60‰, 热成因气δ13C(CH4)>-40‰, 混合成因气δ13C(CH4)介于二者之间.随着有机质演化程度增强, 从生物成因气至热成因气, δ13C(CH4)、δ13C(CO2-CH4)、δ13C(C2H6-CH4)及CH4/(C2H6+C3H8)具有变重趋势且相关性明显, δ13C(CH4)与δ13C(CO2-CH4)、δ13C(CH4)与δ13C(C2H6-CH4)及δ13C(CH4)与CH4/(C2H6+C3H8)是划分煤型气成因类型最可靠的图版.

       

    • 图  1  δ13C(CH4)与δD(CH4)关系(据Whiticar,1996)

      A为陆相沉积环境;B为海相沉积环境

      Fig.  1.  Carbon and hydrogen isotopic compositions of methane

      图  2  δ13C(CH4)与δ13C(CO2)关系

      a.δ13C(CH4)与δ13C(CO2)关系;b.δ13C(CH4)与δ13C(CO2-CH4)关系

      Fig.  2.  The relationship of δ13C(CH4) versus δ13C(CO2) in coal type gases

      图  3  δ13C(CH4)与δ13C(C2H6)关系

      a.δ13C(CH4)与δ13C(C2H6)关系;b.δ13C(CH4)与δ13C(C2H6-CH4)关系

      Fig.  3.  The relationships of δ13C(CH4) versus δ13C(C2H6) in coal type gases

      图  4  δ13C(CH4)与δ13C(C3H8)关系

      Fig.  4.  The relationships of δ13C(CH4) versus δ13C(C3H8) in coal type gases

      图  5  δ13C(CH4)与CH4/(C2H6+C3H8)关系

      Fig.  5.  The relationships of δ13C(CH4) versus CH4/(C2H6+C3H8) in coal type gases

      表  1  国内、外不同盆地煤型气地层分布与碳、氢同位素组成数据

      Table  1.   The date of stratigraphic distribution and carbon and hydrogen isotopic compositions of coal type gas from different basins all over the world

      盆地或地区 储层 δ13C(CH4) δ13C(C2H6) δ13C(C3H8) δD(CH4) δ13C(CO2) C1/C2+3 类型 数据来源
      柴达木 E-Q -73.6~-62.9/-66.6(69) -50.6~-22.0/-43.9(43) -35.4~-23.3/-32.5(38) -268.0~-210.0/-230.6(44) -21.5~-3.2/-12.1(14) 235.9~2 499.0/1 054.3(47) 生物成因气 戴金星等,1996张晓宝等,2003赵东升等,2006贾星亮等,2008刘文汇等,2009张英等,2009沈平等,2010
      陆良 N2 -73.3~-71.8/-72.5(8) -66.0~-61.2/-63.0(4) / -242.0~-234.0/-236.2(4) / 1 600.8~3 274.0/1 936.5(7) 生物成因气 王大悦和罗槐章,2000徐永昌等,2005沈平等,2010
      保山 E2-N2 -63.6~-59.0/-62.6(21) -53.0~-46.1/-49.1(10) / -267.0~-252.0/-258.5(11) -12.5~-9.3/-11.1(8) 375.2~9 910.0/1 748.7(14) 生物成因气 刘树根等,1998徐永昌等,2005沈平等,2010;党红艳等,2010
      百色 E2-N2 -69.7~-64.9/-67.8(7) -64.5~-45.2/-54.8(7) -50.1~-35.5/-42.2(5) / / 293.1~9 814.0/2 094.9(6) 生物成因气 罗毅等,2003
      T2-E2 -61.1~-58.4/-59.2(4) -38.5~-36.1/-37.3(2) -33.4(1) -237.9(1) / 2.3~28.1/11.2(4) 混合成因气 戴金星等,1996罗毅等,2003
      渤海湾 Es1 -57.5(1) / / / / 202.7 生物成因气 王振升等,2010
      Es1-Em -59.3~-55.6/-57.2(5) -48.5~-31.2/-41.2(3) / / / 68.5~2 422.3/853.9(3) 混合成因气 王振升等,2010
      C-Ed2 -37.6~-28/-34.4(28) -33.7~-13.9/-26.9(28) -32.9~-12.8/-24.8(28) / / 3.9~80.7/17.4(13) 热成因气 赵青芳,2005徐耀辉等,2005
      鄂尔多斯 O1m-J -37.9~-23.7/-31.2(41) -26.6~-7.7/-22.5(37) -26.3~-19.4/-23.8(23) -380.0~-117.0/-267.7(23) -24.5~-21.8/-23.0(23) 2.4~1 166.6/98.3(23) 热成因气 陈安定,2002贺建桥,2004帅燕华等,2005
      塔里木 O-N1 -38.5~-22.6/-31.7(75) -37.7~-18.0/-24.5(60) -34.6~-13.2/-23.1(56) -191.0~-127.0/-166.4(37) -23.3~-5.4/-18.8(35) 3.7~119.5/28.9(64) 热成因气 刘全有,2001刘文汇等,2003刘全有等,2007
      敦化 Q -34.5~-26.9/-30.8(5) -28.9~-18.8/-25.4(4) -28.7~-24.2/-27.0(3) -228.0~-144.0/-188.2(5) -17.9~-15.4/-16.7(5) / 热成因气 段毅等,2011
      淮南 C3-P1 -59.4~-51.1/-56(9) -23.7~-18.8/-20.7(9) -25.3~-7.7/-19.5(6) -243.0~-219.0/-231.0(2) -32.0~-12.6/-21.5(7) 359.3~394.4/376.8(2) 混合成因气 陶明信等,2005;张弘等,2005
      恩洪 P2 -54.5~-47.9/-51.3(4) / / -206.0~-196.0/-201.0(2) / 117.9~128.1/123.0(3) 混合成因气 陶明信等,2005
      霍州 P1 -61.7(1) -21.5(1) / -229.5(1) / 5 240.6(1) 生物成因气 陶明信等,2005
      P1 -36.3(1) / / / / 1.2(1) 热成因气 张小军等,2009
      海拉尔 -73.2(1) / / / / 557.7(1) 生物成因气 张小军等,2009
      苏北 E1 -53.3(1) -36.5(1) / / / 48.0(1) 混合成因气 郑绍贵等,2000
      莺歌海 Q -63.3(1) / / -152.0(1) / / 生物成因气 沈平等,2010
      启东 Q -70.5(1) / / -158.0(1) / / 生物成因气 沈平等,2010
      沁水 -31.2(1) / / / / 14 137.1(1) 热成因气 张小军等,2009
      靖远 -43.4(1) / / / / 360.9(1) 热成因气 张小军等,2009
      悉尼和鲍恩 P -38.8~-34.4/-36.7(3) / / / -21.9~-19.3/-20.9(3) 15.1~16.9/15.8(3) 热成因气 Smith and Palasser, 1996
      上西里西亚 C3 -74.0~-61.6/-69.5(12) / / -184.0~-157.0/-169.6(11) -27.2~-13.1/-16.9(4) 449.3~9 840.0/5 405.3(6) 生物成因气 Kotarba, 2001
      C3 -54.2~-44.5/-49.1(8) -22.3(1) / -202.0~-153.0/-183.9(8) -17.1~-2.8/-10(8) 130.6~5 405.3/1 444.9(9) 混合成因气 Kotarba, 2001
      卢布林 C3 -67.3(1) / / -201.0(1) -11.9(1) / 生物成因气 Kotarba, 2001
      C3 -52.5(1) / / / -13.7(1) / 混合成因气 Kotarba, 2001
      宗古尔达克 C3 -51.1~-48.3/-49.7(13) -37.9~-25.2/-29.2(12) -26.3~-19.2/-21.7(9) -190.1~-177.7/-183.2(13) -29.4~-13.2/-18.6(10) 76.0~752.0/251.2(13) 混合成因气 Hakan et al., 2002
        注:表中数据为最小值~最大值/平均值(测试数据组数).
      下载: 导出CSV
    • [1] Ahmed, M., Smith, J.W., 2001. Biogenic Methane Generation in the Degradation of Eastern Australian Permian Coals. Organic Geochemistry, 32(6): 809-816. doi: 10.1016/S0146-6380(01)00033-X
      [2] Chen, A.D., 2002. Feature of Mixed Gas in Central Gas Field of Ordos Basin. Petroleum Exploration and Development, 29(2): 33-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200202010.htm
      [3] Chen, R.S., 1989. Natural Gas Geology. China University of Geosciences Press, Wuhan(in Chinese).
      [4] Dai, J.X., Pei, X.G., Qi, H.F., 1996. Natural Gas Geology in China(Part 2). Petroleum Industry Press, Beijing (in Chinese).
      [5] Dai, J.X., Qi, H.F., Song, Y., et al., 1986. The Composition and Methane Carbon Isotopes of Coal-Bed Gases in China and Its Implications for the Origin. Science in China(Series B), 12: 1317-1326 (in Chinese). http://www.researchgate.net/publication/292378305_The_composition_and_methane_carbon_isotopes_of_coal-bed_gases_in_China_and_its_implications_for_the_origin
      [6] Dang, H.Y., Shen, Z.M., Liu, S.B., et al., 2010. Geochemical Characteristics of Biogenetic Gas in the Baoshan Basin. Journal of Sichuan Geology, 130(1): 91-93 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SCDB201001025.htm
      [7] Duan, Y., Zhang, X.L., Sun, T., et al., 2011. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Herbaceous Swamp Peat at Different Thermal Maturity Stages. Science Bulletin, 56(6): 407-413 (in Chinese).
      [8] Flores, R.M., Rice, C.A., Stricker, G.D., et al., 2008. Methanogenic Pathways of Coalbed Gas in the Powder River Basin, United States: The Geologic Factor. International Journal of Coal Geology, 76(1-2): 52-75. doi: 10.1016/j.coal.2008.02.005
      [9] Hakan, H., Namik, Y.M., Cramer, B., et al., 2002. Isotopic and Molecular Composition of Coal-Bed Gas in the Amasra Region (Zonguldak Basin-Western Black Sea). Organic Geochemistry, 33(12): 1429-1439. doi: 10.1016/S0146-6380(02)00123-7
      [10] He, J.Q., 2004. The Study of Generated Hydrocarbon of Shenshan Jurassic Lignite in Simulation Experiments (Dissertation). Lanzhou Institute of Geology, Chinese Academy of Science, Lanzhou (in Chinese with English abstract).
      [11] Jia, X.L., Zhou, S.X., Song, Z.X., et al., 2008. Geochemical Characteristics of Biogenic Gas and Heavy Hydrocarbon Origin in Sanhu Region of Qaidam Basin. Natural Gas Geoscience, 19(4): 524-529 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200804015.htm
      [12] Kotarba, M.J., 2001. Composition and Origin of Coalbed Gases in the Upper Silesian and Lublin Basins, Poland. Organic Geochemistry, 32(1): 163-180. doi: 10.1016/S0146-6380(00)00134-0
      [13] Liu, Q.Y., 2001. The Geochemical Study of Coal-Generated Hydrocarbon in Simulated Experiment (Dissertation). Lanzhou Institute of Geology, Chinese Academy of Science, Lanzhou (in Chinese with English abstract).
      [14] Liu, Q.Y., Dai, J.X., Li, J., et al., 2007. Geochemical Characteristics and Significance to Maturity and Sedimentary Environment of Natural Gas Hydrogen Isotopes in Tarim Basin. Science in China (Series D), 37(12): 1599-1608 (in Chinese).
      [15] Liu, S.G., Dai, S.L., Zhao, Y.S., et al., 1998. Hydrocarbon Source Rocks and Their Natural Gas Generation Characteristics in Baoshan Basin, Yunnan Province. Natural Gas Industry, 18(1): 18-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG801.004.htm
      [16] Liu, W.H., Chen, M.J., Guan, P., et al., 2009. Three Geochemical Tracing System and Practice of Natural Gas in Hydrocarbon Formation and Accumulation. Science Press, Beijing, 39-146 (in Chinese).
      [17] Liu, W.H., Song, Y., Liu, Q.Y., et al., 2003. Evolution of Carbon Isotopic Composition in Pyrolytic Gases Generated from Coal and Its Main Macerals. Acta Sedimentological Sinica, 21(1): 183-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200301027.htm
      [18] Luo, Y., Zhu, Y.M., Xue, X.L., et al., 2003. Genetic Type and Formation Mechanism of Shallow Gas in Baise Basin. Guangxi Sciences, 10(4): 286-191 (in Chinese with English abstract). http://jpkc.xsyu.edu.cn/sydz/ydwx/02/百色盆地第三系浅层气成因类型与形成机制.pdf
      [19] Rice, D.D., 1992. Controls, Habitat, and Resource Potential of Ancient Bacterial Gas. In: Vially, R., ed., Bacterial Gas. Editons Technip, Paris, 91-120.
      [20] Rice, D.D., 1993. Composition and Origin of Coalbed Gas. In: Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal. AAPG Studied in Geology Series, Tulsa, 38, 159-184.
      [21] Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649-661. doi: 10.1016/0016-7037(80)90155-6
      [22] Schoell, M., 1983. Genetic Characterization of Natural Gases. AAPG Bulletin, 67(12): 2225-2238.
      [23] Shen, P., Wang, X.F., Xu, Y., et al., 2010. Carbon and Hydrogen Isotopic Compositions: Generation Pathway of Bacterial Gas in China. Acta Sedimentological Sinica, 28(1): 183-187 (in Chinese with English abstract).
      [24] Shuai, Y.H., Zou, Y.R., Liu, J.Z., et al., 2005. Carbon Isotope Modeling of Coal-Derived Methane and Ethane from the Upper Paleozoic of the Ordos Basin, China. Geological Review, 51(6): 665-671 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200506010.htm
      [25] Smith, J.W., Gould, K.W., Rigby, D., 1982. The Stable Isotope Geochemistry of Australian Coals. Organic Geochemistry, 3(4): 111-131. doi: 10.1016/0146-6380(81)90016-4
      [26] Smith, J.W., Pallasser, R.J., 1996. Microbial Origin of Australian Coalbed Methane. AAPG Bulletin, 80(6): 891-897. http://aapgbull.geoscienceworld.org/content/80/6/891
      [27] Tao, M.X., Shi, B.G., Li, J.Y., et al., 2007. Secondary Biological Coalbed Gas in the Xinji Area, Anhui Province, China: Evidence from the Geochemical Features and Secondary Changes. International Journal of Coal Geology, 71(2-3): 358-370. doi: 10.1016/j.coal.2006.12.002
      [28] Tao, M.X., Wang, W.C., Xie, G.X., et al., 2005. Discovery of Secondary Biogenic Methane from Part of the Coalfield in China. Science Bulletin, 50(S1): 14-18 (in Chinese).
      [29] Wang, D.R., Luo, H.Z., 2000. The Natural Gas and Source Rocks in Luliang Basin, Yunnan Province: A possibility of Surveying Biogas Fields in Dian-Qian-Gui Region. Natural Gas Industry, 20(3): 12-15 (in Chinese with English abstract).
      [30] Wang, Z.S., Yu, X.M., Guo, J.Y., et al., 2010. Geochemical Characteristics and Genesis of Natural Gas in Qikou Sag. Natural Gas Geoscience, 21(4): 683-691 (in Chinese with English abstract). http://www.researchgate.net/publication/284593108_Geochemical_characteristics_and_genesis_of_natural_gas_in_Qikou_sag
      [31] Whiticar, M.J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gas. International Journal of Coal Geology, 32(1-4): 191-215. doi: 10.1016/S0166-5162(96)00042-0
      [32] Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic Methane Formation in Marine and Freshwater Environments: CO2 Reduction vs. Acetate Fermentation-Isotopic Evidence. Geochimica et Cosmochimica Acta, 50(5): 693-709. doi: 10.1016/0016-7037(86)90346-7
      [33] Xu, Y.C., Lin H.Y., Ge, D.M., 1994. Genetic Theory of Natural Gases and Its Application. Science Press, Beijing, 84-100 (in Chinese).
      [34] Xu, Y.C., Liu, W.H., Shen, P., et al., 2005. Carbon and Hydrogen Isotopics Characteristics of Luliang and Baoshan Gas Reservoirs and Discovery of Pure Biogenic Ethane. Science in China (Ser. D), 35(8): 758-764 (in Chinese).
      [35] Xu, Y.H., Wen, Z.G., Tang, Y.J., et al., 2005. Thermal Simulation Online Isotope Techniques in the Gas Source. Journal of Oil and Gas Technology (J. JPI), 27(6): 708-710 (in Chinese).
      [36] Zhang, H., Cui, Y.J., Tao, M.X., et al., 2005. CBM Forming Dynamic System Evolution of Secondary Biogenic and Thermogenic Mixed in Huainan Coalfield. Science Bulletin, 50(S1): 19-26 (in Chinese). http://www.cqvip.com/QK/86894X/2005S1/4000368149.html
      [37] Zhang, X.B., Xu, Z.Y., Duan, Y., et al., 2003. Metabolic Pathway of the Quaternary Biogenetic Gases and Their Migration and Accumulation in the Qaidam Basin, China. Geological Review, 49(2): 168-174 (in Chinese with English abstract). http://www.cqvip.com/QK/91067X/20032/7512825.html
      [38] Zhang, X.J., Tao, M.X., Ma, J.L., et al., 2009 Characteristics of Carbon Isotope Composition from Secondary Biogenic Gas in Coalbed Gases: Taking the Huainan Coal Field as an Example. Petroleum Geology and Experiment, 31(6): 622-626 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/sysydz200906015
      [39] Zhang, Y., Li, Z.S., Wang, D.L., et al., 2009. Geochemical Characteristics and Play Targets of Gas in Eastern Qaidam Basin, NW China. Petroleum Exploration and Development, 36(6): 693-700 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60003-1
      [40] Zhang, Y.G., Chen, H.J., 1983. Concepts on the Generation and Accumulation of Biogenic Gas. Oil and Gas Geology, 4(2): 160-170 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT198302005.htm
      [41] Zhao, D.S., Li, W.H., Wu, Q.Y., et al., 2006. Characteristics of Carbon Isotope and Origin of Natural Gas in Qaidam Basin. Acta Sedimentologica Sinica, 24(1): 135-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200601017.htm
      [42] Zhao, Q.F., 2005. On the Thermal Evolution and Kinetics of Hydrocarbon Generation of Late Paleozoic Coal Measure Source Rocks in Huimin Depression (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou (in Chinese with English abstract).
      [43] Zheng, S.G., Guo, N.F., Wang, H.X., 2000. Natural Gas Reservoirs in Jiangsu Province and Their Formation Models. Natural Gas Industry, 20(2): 8-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200002002.htm
      [44] 陈安定, 2002. 论鄂尔多斯盆地中部气田混合气的实质. 石油勘探与开发, 29(2): 33-38. doi: 10.3321/j.issn:1000-0747.2002.02.008
      [45] 陈荣书, 1989. 天然气地质学. 武汉: 中国地质大学出版社.
      [46] 戴金星, 裴锡古, 戚厚发, 1996. 中国天然气地质学(卷二). 北京: 石油工业出版社.
      [47] 戴金星, 戚厚发, 宋岩, 等, 1986. 我国煤层气组分、碳同位素类型及其成因和意义. 中国科学(B辑), 12: 1317-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198612011.htm
      [48] 党洪艳, 沈忠民, 刘四兵, 等, 2010. 保山盆地生物气地球化学特征. 四川地质学报, 130(1): 91-93. doi: 10.3969/j.issn.1006-0995.2010.01.024
      [49] 段毅, 张晓丽, 孙涛, 等, 2011. 草本沼泽泥炭不同演化阶段气体碳氢同位素组成及其演化特征. 科学通报, 56(6): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201106007.htm
      [50] 贺建桥, 2004. 神山侏罗系褐煤生烃模拟实验研究(硕士学位论文). 兰州: 中国科学院兰州地质研究所.
      [51] 贾星亮, 周世新, 宋振响, 等, 2008. 柴达木盆地三湖地区生物气地球化学特征及重烃组分成因分析. 天然气地球科学, 19(4): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200804015.htm
      [52] 刘全有, 2001. 煤成烃热模拟地球化学特征研究(硕士学位论文). 兰州: 中国科学院兰州地质研究所.
      [53] 刘全有, 戴金星, 李剑, 等, 2007. 塔里木盆地天然气氢同位素地球化学与对热成熟度和沉积环境的指示意义. 中国科学(D辑), 37(12): 1599-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712006.htm
      [54] 刘树根, 戴苏兰, 赵永胜, 等, 1998. 云南保山盆地烃源岩及其天然气生成特征. 天然气工业, 18(1): 18-24. doi: 10.3321/j.issn:1000-0976.1998.01.005
      [55] 刘文汇, 陈孟晋, 关平, 等, 2009. 天然气成烃成藏三元地球化学示踪体系及实践. 北京: 科学出版社, 39-146.
      [56] 刘文汇, 宋岩, 刘全有, 等, 2003. 煤岩及其主显微组份热解气碳同位素组成的演化. 沉积学报, 21(1): 183-190. doi: 10.3969/j.issn.1000-0550.2003.01.028
      [57] 罗毅, 朱扬明, 薛秀丽, 等, 2003. 百色盆地第三系浅层气成因类型与形成机制. 广西科学, 10(4): 286-191. doi: 10.3969/j.issn.1005-9164.2003.04.014
      [58] 沈平, 王晓峰, 徐茵, 等, 2010. 我国生物气藏碳、氢同位素特征、形成途径及意义. 沉积学报, 28(1): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001022.htm
      [59] 帅燕华, 邹艳荣, 刘金钟, 等, 2005. 煤成甲烷、乙烷碳同位素动力学研究和应用——以鄂尔多斯盆地上古生界煤成气为例. 地质论评, 51(6): 665-671. doi: 10.3321/j.issn:0371-5736.2005.06.008
      [60] 陶明信, 王万春, 解光新, 等, 2005. 中国部分煤田发现的次生生物成因煤层气. 科学通报, 50(S1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1003.htm
      [61] 王大悦, 罗槐章, 2000. 云南陆良盆地天然气及烃源岩地球化学特征——兼论滇黔桂地区寻找生物气田的可能性. 天然气工业, 20(3): 12-15. doi: 10.3321/j.issn:1000-0976.2000.03.003
      [62] 王振升, 于学敏, 国建英, 等, 2010. 歧口凹陷天然气地球化学特征及成因分析. 天然气地球科学, 21(4): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201004030.htm
      [63] 徐永昌, 林宏谕, 葛道迈, 等, 1994. 天然气成因理论及应用. 北京: 科学出版社, 84-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199504001.htm
      [64] 徐永昌, 刘文汇, 沈平, 等, 2005. 陆良、保山气藏碳、氢同位素特征及纯生物乙烷发现. 中国科学(D辑), 35(8): 758-764. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508007.htm
      [65] 徐耀辉, 文志刚, 唐友军, 等, 2005. 热模拟在线同位素技术在气源对比中的应用. 石油天然气学报(江汉石油学院学报), 27(6): 708-710. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200506009.htm
      [66] 张泓, 崔永君, 陶明信, 等, 2005. 淮南煤田次生生物成因与热成因混合型煤层气成藏动力学系统演化. 科学通报, 50(S1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1004.htm
      [67] 张晓宝, 徐自远, 段毅, 等, 2003. 柴达木盆地三湖地区第四系生物气的形成途径与运聚方式. 地质论评, 49(2): 168-174. doi: 10.3321/j.issn:0371-5736.2003.02.008
      [68] 张小军, 陶明信, 马锦龙, 等, 2009. 含次生生物成因煤层气的碳同位素组成特征——以淮南煤田为例. 石油实验地质, 31(6): 622-626. doi: 10.3969/j.issn.1001-6112.2009.06.015
      [69] 张英, 李志生, 王东良, 等, 2009. 柴达木盆地东部天然气地球化学特征与勘探方向. 石油勘探与开发, 36(6): 693-700. doi: 10.3321/j.issn:1000-0747.2009.06.003
      [70] 张义刚, 陈焕疆, 1983. 论生物气的生成和聚集. 石油与天然气地质, 4(2): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198302005.htm
      [71] 赵东升, 李文厚, 吴清雅, 等, 2006. 柴达木盆地天然气的碳同位素地球化学特征及成因分析. 沉积学报, 24(1): 135-140. doi: 10.3969/j.issn.1000-0550.2006.01.018
      [72] 赵青芳, 2005. 惠民凹陷上古生界煤系源岩的热演化特征与成烃研究(硕士学位论文). 广州: 中国科学院广州地球化学研究所.
      [73] 郑绍贵, 郭念发, 王宏祥, 2000. 江苏天然气藏及成藏模式. 天然气工业, 20(2): 8-11. doi: 10.3321/j.issn:1000-0976.2000.02.003
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  3335
    • HTML全文浏览量:  140
    • PDF下载量:  641
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-08-22
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回