Late Jurassic-Early Cretaceous Mineralization in the Laojunshan Ore Concentration Area, Yunnan Province
-
摘要: 云南省老君山矿集区产出南秧田、花石头、茶叶山等众多钨矿床, 是南岭成矿带西段为数不多的以钨为主的矿集区.由于受到多期构造热事件的影响, 该矿集区的成矿年龄存在较大的争议.为此, 选择白钨矿Sm-Nd同位素体系测定了南秧田钨矿田中长石石英脉型矿体的年龄, 用白云母和黑云母Ar-Ar方法厘定了区域花岗伟晶岩的形成时代及其变质围岩的变质时限.研究表明, 南秧田钨矿田中长石石英脉型白钨矿矿体的形成年龄为159±14 Ma, 明显晚于印支期形成的矽卡岩型矿体; 两花岗伟晶岩及其围岩变质作用的时代分别为144~141 Ma和121~112 Ma, 说明老君山矿集区存在晚侏罗世-早白垩世的构造热事件和成矿作用.综合前人的研究成果, 老君山矿集区受到区域花岗片麻岩和花岗岩产出特征的制约, 成矿时代分布与南岭成矿带一致, 存在晚三叠世、晚侏罗世-早白垩世和晚白垩世3个成矿高峰期.而且, 老君山矿集区的成矿特点与南岭东段的钨矿床有一定的可类比性, 是"东钨西扩"的典型实例, 这可能与老君山矿集区遭受了较高的剥蚀程度有关, 暗示南岭西段的高剥蚀区是寻找晚侏罗世钨矿床的远景区.Abstract: The Laojunshan ore concentration area, containing many tungsten deposits of Nanyangtian, Huashitou and Chayeshan, is one of the few tungsten concentration areas in the western Nanling metallogenic belt. But, its regional ore-forming ages are controversial due to multi-stage tectono-thermal events. In this paper, the scheelite Sm-Nd dating method was used to determine the ore-forming age of the feldspar quartz vein type ore bodies in the Nanyangtian ore field, and the muscovite and biotite Ar-Ar dating method were used to determine the crystallization ages of the regional granitic pegmatites and the metamorphic age of their wall rocks respectively. The dating results show that the feldspar quartz veins type ore bodies formed at 159±14 Ma, younger than the skarn type ore bodies, and the pegmatite crystallization ages and the wall rock's metamorphic ages are 144-141 Ma and 121-112 Ma respectively. So the Late Jurassic-Early Cretaceous tectono-thermal event and tungsten mineralization occurred in Laojunshan area. The metallogenic regularity in the Laojunshan areas illustrates that the regional ore deposits or spots are constrained by the regional granite gneiss and granitic intrusion, and the ore-forming period is consistent with the three ore-forming peaks in the Nanling minerallenic belt. Furthermore, the mineralization features in Laojunshan area are similar with that in the eastern Nanling metallogenic belt, which may be due to the high denudation degree. It is concluded that the great denudation area in the western Nanling region has great potential to find tungsten deposit formed in Late Triassic and Indo-Chinese and Late Jurassic-Early Cretaceous.
-
图 1 云南省老君山矿集区矿产地质图(据云南省地质局,1:20万地质矿产报告·马关幅,1976编制)
1.三叠系;2.二叠系;3.泥盆系;4.寒武系歇场组白云质灰岩;5.寒武系龙哈组白云岩;6.寒武系田蓬组白云质灰岩;7.寒武系未分层中下统片岩、片麻岩;8.花岗片麻岩;9.燕山晚期第1期中粗粒花岗岩;10.燕山晚期第2期中细粒花岗岩;11.断裂;12.超大型矿床;13.大型矿床;14.中型矿床;15.小型矿床;16.矿(化)点;17.白钨矿矿床;18.黑钨矿矿床;19.锡矿;20.钨锡矿;21.锡多金属矿;22.铍矿;23.钨铍矿;24.铜矿;25.铅锌矿;26.白云母矿;27.晚三叠世成矿;28.晚三叠世和晚侏罗-早白垩世多阶段成矿;29.晚侏罗世-早白垩世成矿;30.晚白垩世成矿;31.本文工作区
Fig. 1. Geological map of the Laojunshan ore concentration area in Yunnan Province
表 1 南秧田矿田法瓦矿床的白钨矿Sm-Nd定年结果
Table 1. Sm-Nd dating results of scheelite in the Fawa tungsten deposit, Nanyangtian ore field
原送样号 W(Sm)(10-6) W(Nd)(10-6) 147Sm/144Nd 143Nd/144Nd 1σ YF-2-1 12.15 38.38 0.191 6 0.511 980 0.000 003 YF-2-2 12.40 37.44 0.200 3 0.511 990 0.000 002 YF-2-3 13.56 35.87 0.228 7 0.512 020 0.000 003 YF-2-4 11.82 30.01 0.238 2 0.512 028 0.000 003 YF-2-5 9.49 26.88 0.213 6 0.512 004 0.000 002 YF-2-6 9.15 27.67 0.200 1 0.511 989 0.000 004 YF-2-7 15.15 46.58 0.196 8 0.511 985 0.000 004 YF-2-8 9.42 23.04 0.247 3 0.512 038 0.000 003 YF-2-9 12.17 37.56 0.196 1 0.511 985 0.000 004 表 2 云南老君山矿集区保良街伟晶岩脉的白云母(BLJ-2)40Ar/39Ar逐步加热分析结果
Table 2. The 40Ar/39Ar step-heating data of muscovite (BLJ-2) from the Baoliangjie pegmatite
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) 40Ar/39Ar 39Ar(10-14 mol) 39Ar(Cum.)(%) 年龄(Ma) ±1σ(Ma) 400 21.218 2 0.055 8 0.246 0 0.048 9 22.28 4.728 2 23.29 0.34 82.0 11.0 500 11.645 1 0.028 9 0.091 9 0.033 6 26.67 3.105 7 25.18 0.70 54.0 10.0 600 10.724 5 0.019 5 0.040 7 0.0249 46.16 4.951 1 75.78 1.80 85.4 4.3 700 7.876 8 0.006 6 0.025 5 0.020 5 75.23 5.926 1 169.17 4.24 101.8 2.7 800 8.015 2 0.001 3 0.008 0 0.014 5 95.29 7.637 8 757.85 15.20 130.1 1.4 900 7.958 9 0.000 5 0.003 7 0.013 3 98.16 7.812 3 1013.71 29.86 133.0 1.3 1 000 7.985 5 0.000 3 0.000 6 0.012 7 98.74 7.884 7 2258.82 62.53 134.2 1.3 1 100 8.328 6 0.000 4 0.003 6 0.013 4 98.59 8.211 6 1077.28 78.11 139.5 1.5 1 200 8.501 4 0.000 4 0.001 2 0.014 9 98.62 8.384 2 997.64 92.54 142.3 1.6 1 300 8.543 3 0.000 8 0.017 0 0.014 5 97.16 8.300 7 479.43 99.47 141.0 1.6 1 400 10.692 7 0.008 2 0.079 0 0.027 6 77.34 8.270 6 36.58 100.00 140.5 2.7 注:下标m表示样品中测定的同位素比值,总的年龄=134.3 Ma,40Ar/39Ar为放射性40Ar与39Ar的比值,W=45.90 mg,J=0.009 792. 表 3 云南老君山矿集区保良街伟晶岩脉围岩(黑云闪长片麻岩)的黑云母(BLJ-3)40Ar/39Ar逐步加热分析结果
Table 3. The 40Ar/39Ar step-heating data of biotite (BLJ-3) from the wall rock (biotite diorite gneiss) of the Baoliangjie pegmatite
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) 40Ar/39Ar 39Ar(10-14 mol) 39Ar(Cum.)(%) 年龄(Ma) ±1σ(Ma) 400 174.087 4 0.586 0 0.092 4 0.133 2 0.53 0.917 6 58.96 0.72 15.9 9.6 500 24.185 9 0.077 2 0.057 9 0.031 5 5.67 1.372 0 119.15 2.18 23.7 8.7 600 19.984 4 0.047 9 0.012 0 0.023 0 29.13 5.822 1 275.66 5.54 98.3 2.4 700 8.783 3 0.007 1 0.007 4 0.014 9 76.19 6.692 0 1 137.23 19.44 112.5 1.9 800 7.459 9 0.002 5 0.005 2 0.013 2 90.13 6.723 9 707.81 28.08 113.0 1.3 900 6.971 7 0.001 1 0.006 8 0.013 4 95.48 6.656 3 1 423.19 45.47 111.9 1.2 1 000 7.148 4 0.001 6 0.025 1 0.013 8 93.37 6.674 9 841.15 55.75 112.2 1.3 1 100 6.775 0 0.000 7 0.011 1 0.013 2 97.07 6.576 9 1 993.39 80.10 110.7 1.2 1 200 6.861 2 0.000 8 0.007 5 0.013 1 96.58 6.626 5 1 349.50 96.58 111.5 1.2 1 300 7.219 5 0.001 7 0.069 1 0.015 5 93.08 6.720 5 264.77 99.82 113.0 2.1 1 400 9.719 8 0.010 6 0.257 2 0.037 6 67.82 6.593 2 14.88 100.00 110.9 3.8 注:下标m表示样品中测定的同位素比值,总的年龄=109.4 Ma,40Ar/39Ar为放射性40Ar与39Ar的比值,W=47.04 mg,J=0.009 618. 表 4 云南老君山矿集区上阳坡伟晶岩脉的白云母(BLJ-LB-8)40Ar/39Ar逐步加热分析结果
Table 4. The 40Ar/39Ar step-heating data of muscovite (BLJ-LB-8) from the Shangyangpo pegmatite
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) 40Ar/39Ar 39Ar(10-14 mol) 39Ar(Cum.)(%) 年龄(Ma) ±1σ(Ma) 400 22.144 5 0.051 8 0.232 5 0.037 2 30.87 6.838 0 37.23 0.41 122.4 7.6 500 23.978 8 0.055 9 0.125 2 0.031 2 31.18 7.476 3 59.66 1.08 133.4 8.9 600 26.045 7 0.063 7 0.090 2 0.032 3 27.73 7.224 2 51.99 1.66 129.1 9.3 700 12.976 7 0.019 2 0.025 3 0.017 6 56.27 7.302 5 401.56 6.12 130.4 2.1 800 8.605 8 0.001 8 0.007 1 0.013 8 93.81 8.072 7 894.53 16.07 143.7 1.6 900 8.298 4 0.000 4 0.007 2 0.013 4 98.47 8.171 6 2 774.91 46.92 145.3 1.4 1 000 8.159 8 0.000 5 0.008 6 0.013 4 98.07 8.002 1 1 968.16 68.80 142.5 1.4 1 100 8.281 4 0.000 6 0.026 3 0.012 9 97.89 8.106 8 1 165.88 81.77 144.2 1.6 1 200 8.180 6 0.000 4 0.015 7 0.013 0 98.49 8.057 3 1 499.16 98.44 143.4 1.4 1 300 9.281 5 0.004 3 0.243 1 0.022 7 86.60 8.039 1 125.85 99.83 143.1 1.9 1 400 13.715 1 0.019 2 0.269 3 0.043 0 58.67 8.048 2 14.87 100.00 143.2 6.1 注:下标m表示样品中测定的同位素比值,总的年龄=143.1 Ma,40Ar/39Ar为放射性40Ar与39Ar的比值,W=46.36 mg,J=0.010 268. 表 5 云南老君山矿集区上阳坡伟晶岩脉的围岩(黑云斜长片麻岩)的黑云母(BLJ-LB-2)40Ar/39Ar逐步加热分析结果
Table 5. The 40Ar/39Ar step-heating data of biotite (BLJ-LB-2) from the wall rock (biotite plagiogneiss gneiss) of the Shangyangpo pegmatite
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) 40Ar/39Ar 39Ar(10-14 mol) 39Ar(Cum.)(%) 年龄(Ma) ±1σ(Ma) 400 13.165 0 0.020 1 0.093 7 0.021 7 54.82 7.217 7 205.05 3.15 127.1 3.1 500 8.241 4 0.005 2 0.011 6 0.015 3 81.45 6.712 8 258.56 7.11 118.5 2.2 600 7.440 1 0.001 6 0.003 7 0.012 7 93.41 6.949 5 621.57 16.65 122.6 1.5 700 7.160 6 0.000 4 0.003 6 0.012 9 98.38 7.044 7 1 614.86 41.43 124.2 1.8 800 7.035 7 0.000 5 0.002 6 0.013 1 97.97 6.893 1 1 280.27 61.07 121.6 1.3 900 6.971 3 0.000 5 0.009 2 0.014 1 97.83 6.820 1 412.60 67.40 120.4 1.5 1 000 7.035 6 0.000 7 0.014 4 0.015 2 97.13 6.833 9 255.26 71.32 120.6 1.5 1 100 7.056 8 0.000 8 0.007 3 0.013 5 96.73 6.825 8 722.85 82.41 120.5 1.3 1 200 7.114 8 0.000 7 0.007 9 0.013 6 97.12 6.909 6 890.97 96.08 121.9 1.4 1 300 7.179 9 0.001 1 0.023 5 0.014 8 95.50 6.857 0 239.51 99.76 121.0 1.6 1 400 9.185 7 0.014 5 0.123 9 0.038 0 53.39 4.904 5 15.92 100.00 87.4 7.5 注:下标m表示样品中测定的同位素比值,总年龄=122.1 Ma,40Ar/39Ar为放射性40Ar与39Ar的比值,W=46.90 mg,J=0.010 116. 表 6 云南老君山矿集区主要地质体的年龄数据
Table 6. The dating results of main geological bodies in the Laojunshan ore concentration area
矿床名称 地质体 定年方法 年龄(Ma) 参考文献 南秧田钨矿 矽卡岩 辉钼矿Re-Os 209~214 冯佳睿等,2011a 金云母Ar-Ar 114~129 谭洪旗等,2011 长石石英脉 白钨矿Sm-Nd 159±14 本文 新寨锡矿 矽卡岩 金云母Ar-Ar 209 冯佳睿等,2011a 花石头钨矿 石英脉 白云母Ar-Ar 85 刘玉平等,2011 洒西钨铍矿 矽卡岩 金云母Ar-Ar 120 刘玉平等,2011 都龙锡多金属矿床 矽卡岩 锡石TIMS U-Pb 80 刘玉平等,2007 保良街伟晶岩 白云母钠长石伟晶岩 白云母Ar-Ar 141 本文 黑云闪长片麻岩 黑云母Ar-Ar 112 本文 上阳坡伟晶岩 白云母钠长石伟晶岩 白云母Ar-Ar 144 本文 黑云斜长片麻岩 黑云母Ar-Ar 121 本文 -
[1] Cai, D.K., 1983. Formation, Evolution and Tungsten-Tin Mineralization of Granitoid in Laojunshan, Southeastern Yunnan Province. Yunnan Geology, 2(2): 102-113 (in Chinese). [2] Cai, M.H., Chen, K.X., Qu, W.J., et al., 2006. Geological Characteristics and Re-Os Dating of Molybdenites in Hehuaping Tin-Polymetallic Deposit, Southern Hunan Province. Mineral Deposits, 25(3): 263-268 (in Chinese with English abstract). [3] Chen, W., Zhang, Y., Ji, Q., et al., 2002. The Magmatism and Deformation Times of the Xidatan Rock Series, East Kunlun Mountain. Science in China(Series B), 45(Suppl. ): 20-27. doi: 10.3969/j.issn.1674.2002.zl.003 [4] Chen, Y.C., 1983. The Metallogenetic Series of the Rare-Earth, Rare and Nonferrous Metal Deposits Related to the Yanshanian Granites in South China. Mineral Deposits, (2): 15-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198302002.htm [5] Feng, J.R., Mao, J.W., Pei, R.F., et al., 2011a. A Tentative Discussion on Indosinian Ore-Forming Events in Laojunshan Area of Southeastern Yunnan: A Case Study of Xinzhai Tin Deposit and Nanyangtian Tungsten Deposit. Mineral Deposits, 30(1): 57-73 (in Chinese with English abstract). [6] Feng, J.R., Mao, J.W., Pei, R.F., et al., 2011b. Ore-Forming Fluids and Metallogenesis of Nanyangtian Tungsten Deposit in Laojunshan, Southeastern Yunnan Province. Mineral Deposits, 30(3): 403-419 (in Chinese with English abstract). http://www.researchgate.net/publication/285467339_Ore-forming_fluids_and_metallogenesis_of_Nanyangtian_tungsten_deposit_in_Laojunshan_southeastern_Yunnan_Province [7] Feng, J.R., Zhou, Z.H., Cheng, Y.B., 2010. Characteristics and Significance of the Fluid Inclusions from the Nanyangtian Tungsten Deposit in Yunnan Province. Acta Petrologica et Mineralogica, 29(1): 50-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201001008.htm [8] Guo, L.G., 2006. Primary Research on Geochemistry and Geochronology of the Laojunshan Metamorphic Core Complex, Sourtheastern Yunnan (Dissertation). Institute of Geochemistry, Chinese Academy of Science, Guiyang (in Chinese with English abstract). [9] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005. Three Major Metallogenic Events in Mesozoic in South China. Mineral Deposits, 24(2) : 99-107 (in Chinese with English abstract). [10] Hua, R.M., Li, G.L., Zhang, W.L., et al., 2010. A Tentative Discussion on Differences between Large-Scale Tungsten and Tin Mineralizations in South China. Mineral Deposits, 29(1): 9-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201001004.htm [11] Hua, R.M., Mao, J.W., 1999. A Preliminary Discussion on the Mesozoic Metallogenic Explosion in East China. Mineral Deposits, 18(4): 300-308 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199904001.htm [12] Li, D.X., Xu, S.S., 2000. Rotation-Shearing Genesis of Metamorphic Core Complex—Structural Analysis of Metamorphic Core Complex in Laojunshan, Southeastern Yunnan Province. Geological Review, 46(2): 113-120 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253282262.html [13] Li, H.Q., Xie, C.F., Chang, H.L., et al., 1998. Study on Metallogenetic Chronology of Nonferrous and Precious Metallic Ore Deposits in North Xinjiang, China. Geological Publishing House, Beijing, 10-24 (in Chinese with English abstract). [14] Li, J.K., Wang, D.H., Liang, T., et al., 2013. The Research Progress of Nanling Regional Mineralization and Deep Exploration and Its Indication to Find Tungsten and Tin Deposits in Tibet. Acta Geoscientica Sinica, 34(1): 58-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201301009.htm [15] Li, J.K., Wang, D.H., Zhang, D.H., et al., 2007. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China. Atomic Energy Press, Beijing, 59-97 (in Chinese with English abstract). [16] Li, S.R., Wang, D.H., Liang, T., et al., 2008. Metallogenic Epochs of the Damingshan Tungsten Deposit in Guangxi and Its Prospecting Potential. Acta Geologica Sinica, 82(7): 873-879 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=28044490 [17] Liang, T., Wang, D.H., Hou, K.J., et al., 2011. LA-MC-ICP-MS Zircon U-Pb Dating of Longxianggai Pluton in Dachang of Guangxi and Its Geological Significance. Acta Petrologica Sinica, 27(6): 1624-1636 (in Chinese with English abstract). http://www.oalib.com/paper/1475196 [18] Liu, S.B., Wang, D.H., Chen, Y.C., et al., 2008. 40Ar/39Ar Ages of Muscovite from Different Types Tungsten-Bearing Quartz Veins in the Chong-Yu-You Concentrated Mineral Area in Gannan Region and Its Geological Significance. Acta Geologica Sinica, 82(7): 932-940 (in Chinese with English abstract). http://www.researchgate.net/publication/279652096_40Ar39Ar_ages_of_muscovite_from_different_types_tungsten-bearing_quartz_veins_in_the_Chong-Yu-You_concentrated_mineral_area_in_Gannan_region_and_its_geological_significance [19] Liu, Y.P., Li, Z.X., Li, H.M., et al., 2007. U-Pb Geochronology of Cassiterite and Zircon from the Dulong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200705011.htm [20] Liu, Y.P., Li, Z.X., Ye, L., et al., 2011. Ar-Ar Geochronology of Tungsten Mineralization in the Laojunshan Ore Concentration Area, Yunnan Province. Acta Mineralogica Sinica, (S1): 617-618 (in Chinese). [21] London, D., 2008. Pegmatites. Can Mineral, Special Publication 10, QuÉBec, 347 [22] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract). http://www.researchgate.net/publication/279556851_large-scale_tungsten-tin_mineralization_in_the_nanling_region_south_china_metallogenic_ages_and_corresponding_geodynamic_processes [23] Raimbauh, L., Baumer, A., Dubru, M., et al., 1993. REE Fractionation Between Scheelite and Apatite in Hydrothermal Conditions. American Mineralogist, 78(11-12): 1275-1285. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9410070016&site=ehost-live [24] Tan, H.Q., Liu, Y.P., Ye, L., et al., 2011. 40Ar/39Ar Ages of Phlogopite of the Nanyangtian Tungsten and Tin Deposit in Southeastern Yunnan Province. and Its Geological Significance. Acta Mineralogica Sinica, (S1): 639-640 (in Chinese). [25] Tan, X.H., Li, Z.J., Du, Z.F., 2010. On the Stratoid Scheelite of Kata-Metamorphite in Nanwenhe Area of SE Yunnan. Yunnan Geology, 29(4): 382-387 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YNZD201004002.htm [26] Wang, D.H., Chen, Z.H., Chen, Y.C., et al., 2010a. New Data of the Rock-Forming and Ore-Forming Chronology for China's Important Mineral Resources Areas. Acta Geologica Sinica, 84(7): 1030-1040 (in Chinese with English abstract). http://www.researchgate.net/publication/284594588_New_data_of_the_rock-forming_and_ore-forming_chronology_for_China's_important_mineral_resources_areas [27] Wang, D.H., Chen, Z.H., Huang, G.C., et al., 2012. Northwards and Westwards Prospecting for Tungsten and Its Significance in South China. Geotectonica et Metallogenia, 36(3): 322-239 (in Chinese with English abstract). http://www.cqvip.com/QK/90781X/201203/42988795.html [28] Wang, D.H., Tang, J.X., Ying, L.J., et al., 2010b. Application of "Five Levels+Basement" Model for Prospecting Deposits into Depth. Journal of Jilin University (Earth Science Edition), 40(4): 733-738 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247972302.html [29] Wang, D.H., Zou, T.R., Xu, Z.G., et al., 2004. Advance in the Study of Using Pegmatite Deposits As the Tracer of Orogenic Process. Advance in Earth Sciences, 19(4): 614-620 (in Chinese with English abstract). http://www.researchgate.net/publication/303261921_Advance_in_the_study_of_using_pegmatite_deposits_as_the_tracer_of_orogenic_process [30] Wang, P.X., 1998. Deformation of Asia and Global Cooling: Searching Links between Climate and Tectonics. Quaternary Sciences, 3: 213-221 (in Chinese with English abstract). [31] Wang, X.K., 1994. Geological-Geochemical Characteristics of Xinzhai Tin Deposit in Malipo. Yunnan Geology, 13(1): 1-16 (in Chinese with English abstract). http://www.researchgate.net/publication/284873542_Geological-geochemical_characteristics_of_Xinzhai_Tin_Deposit_in_Malipo [32] Yang, F., Li, X.F., Feng, Z.H., et al., 2009. 40Ar/39Ar Dating of Muscovite from Greisenized Granite and Geological Significance in Limu Tin Deposit. Journal of Guilin University of Technology, 29(1): 21-24 (in Chinese with English abstract). [33] Zeng, Z.G., Li, Z.Y., Liu, Y.P., et al., 1998. REE Geochemistry of Scheelite of Two Genetic Types from Nanyangtian, Southeastern Yunnan. Geology-Geochemistry, 26(2): 34-38 (in Chinese with English abstract). [34] Zhang, L.G., Lan, Y., 1999. Gemological Characteristics and Deposit Geology of Yunnan Emerald. Acta Mineralogica Sinica, 19(2): 189-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199902009.htm [35] 蔡德坤, 1983. 滇东南老君山花岗岩类岩石的形成演化与锡、钨的矿化富集作用. 云南地质, 2(2): 102-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD198302001.htm [36] 蔡明海, 陈开旭, 屈文俊, 等, 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25(3): 263-268. doi: 10.3969/j.issn.0258-7106.2006.03.005 [37] 陈毓川, 1983. 华南与燕山期花岗岩类有关的稀土、稀有、有色金属矿床成矿作用. 矿床地质, (2): 15-24. [38] 冯佳睿, 毛景文, 裴荣富, 等, 2011a. 滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例. 矿床地质, 30(1): 57-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201101007.htm [39] 冯佳睿, 毛景文, 裴荣富, 等, 2011b. 滇东南老君山南秧田钨矿床的成矿流体和成矿作用. 矿床地质, 30(3): 403-419. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103004.htm [40] 冯佳睿, 周振华, 程彦博, 2010. 云南南秧田钨矿床流体包裹体特征及其意义. 岩石矿物学杂质, 29(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201001008.htm [41] 郭利果, 2006. 滇东南老君山变质核杂岩地球化学和年代学初步研究(硕士学位论文). 贵阳: 中国科学院地球化学研究所. [42] 华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次规模成矿作用. 矿床地质, 24(2): 99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002 [43] 华仁民, 李光来, 张文兰, 等, 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9-22. doi: 10.3969/j.issn.0258-7106.2010.01.003 [44] 华仁民, 毛景文, 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308. doi: 10.3969/j.issn.0258-7106.1999.04.002 [45] 李东旭, 许顺山, 2000. 变质核杂岩的旋扭成因——滇东南老君山变质核杂岩的构造解析. 地质论评, 46(2): 113-119. doi: 10.3321/j.issn:0371-5736.2000.02.001 [46] 李华芹, 谢才富, 常海亮, 等, 1998. 新疆北部有色贵金属矿床成矿作用年代学. 北京: 地质出版社, 10-24. [47] 李建康, 王登红, 粱婷, 等, 2013. 南岭区域成矿与深部探测的研究进展及其对西藏钨锡找矿的指示. 地球学报, 34(1): 58-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201301009.htm [48] 李建康, 王登红, 张德会, 等, 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社, 59-97. [49] 李水如, 王登红, 梁婷, 等, 2008. 广西大明山钨矿区成矿时代及其找矿前景分析. 地质学报, 82(7): 873-879. doi: 10.3321/j.issn:0001-5717.2008.07.002 [50] 梁婷, 王登红, 侯可军, 等, 2011. 广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 岩石学报, 27(6): 1624-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106005.htm [51] 刘善宝, 王登红, 陈毓川, 等, 2008. 赣南崇-余-犹矿集区不同类型含矿石英中白云母40Ar/39Ar年龄及其地质意义. 地质学报, 82(7): 932-940. doi: 10.3321/j.issn:0001-5717.2008.07.011 [52] 刘玉平, 李正祥, 李惠民, 等, 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705011.htm [53] 刘玉平, 李正祥, 叶霖, 等, 2011. 滇东南老君山矿集区钨成矿作用Ar-Ar年代学. 矿物学报, (S1): 617-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1320.htm [54] 毛景文, 谢桂青, 郭春丽, 等, 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002 [55] 谭洪旗, 刘玉平, 叶霖, 等, 2011. 滇东南南秧田钨锡矿床金云母40Ar-30Ar定年及意义. 矿物学报, (S1): 639-640. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1332.htm [56] 谭筱虹, 李志均, 杜再飞, 2010. 滇东南南温河地区深变质岩中似层状白钨矿. 云南地质, 29(4): 382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002 [57] 王登红, 陈郑辉, 陈毓川, 等, 2010a. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007009.htm [58] 王登红, 陈郑辉, 黄国成, 等, 2012. 华南"南钨北扩"、"东钨西扩"及其找矿方向探讨. 大地构造与成矿学, 36(3): 322-239. doi: 10.3969/j.issn.1001-1552.2012.03.003 [59] 王登红, 唐菊兴, 应立娟, 等, 2010b. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义. 吉林大学学报(地球科学版), 40(4): 733-738. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004003.htm [60] 王登红, 邹天人, 徐志刚, 等, 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620. doi: 10.3321/j.issn:1001-8166.2004.04.019 [61] 汪品先, 1998. 亚洲形变与全球变冷——探索气候与构造的关系. 第四纪研究, 3: 213-221. doi: 10.3321/j.issn:1001-7410.1998.03.004 [62] 王学焜, 1994. 麻栗坡新寨锡矿床地质地球化学特征. 云南地质, 13(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD401.000.htm [63] 杨锋, 李晓峰, 冯佐海, 等, 2009. 栗木锡矿云英岩化花岗岩白云母39Ar/40Ar年龄及其地质意义. 桂林工学院学报, 29(1): 21-24. doi: 10.3969/j.issn.1674-9057.2009.01.003 [64] 曾志刚, 李朝阳, 刘玉平, 等, 1998. 滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征. 地质地球化学, 26(2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199802005.htm [65] 张良钜, 兰延, 1999. 云南祖母绿的矿床地质及宝石学特征. 矿物学报, 19(2): 189-197. doi: 10.3321/j.issn:1000-4734.1999.02.010