Forward Stratigraphic Modelling of the Depositional Process and Evolution of Shallow Water Deltas in the Poyang Lake, Southern China
-
摘要: 以鄱阳湖现代浅水三角洲沉积体系为例, 应用三维正演地层模拟软件Sedsim, 在参考前人研究的基础上, 首次将湖盆底部地形、湖(海)平面变化、沉积物注入量及注入方式、气候、沉积物供给速率等动力要素结合在一起, 对该浅水三角洲沉积体系的形成过程及1200年以来的演化进行定量正演模拟, 并采用历史和野外数据对鄱阳湖现代浅水三角洲沉积模型进行约束和校正.模拟结果表明, 鄱阳湖浅水三角洲沉积体系的发育是湖盆地形、湖平面变化、物源供给等多因素作用的综合结果.在该三角洲沉积体系中, 由于水体较浅、沉积底形坡度平坦且基准面变化频繁, 三角洲前缘发育的砂体基本上以席状砂为主, 并主要分布于湖区敞流通道附近.湖平面之上的三角洲平原河道发育与改道的现象主要受湖平面变化速率的影响, 即基准面缓慢上升期间和基准面快速下降期间, 河道发育的现象较明显.该模拟结果不仅能够对大型浅水三角洲的内部特征及形成过程有着更直观的认识, 而且也为今后研究不同地区相似的三角洲沉积体系的形成过程提供了可借鉴的分析模型与理论依据.Abstract: Large-scale shallow-water deltas in lacustrine basins have recently been identified as important reservoir plains in the world. The Poyang Lake, the largest fresh water lake of China, develops a series of modern shallow-water deltas, hence provides a good modern analogue for understanding various key depositional processes that control deltaic development and evolution. This paper uses Sedsim, a three-dimensional stratigraphic forward modelling program, to simulate the development and evolution of the shallow-water deltas in the Poyang Lake by considering a number of key processes and parameters affecting the deltaic deposition over 1200 years. According to our simulation results, the construction of the shallow-water deltas in the Poyang Lake is primarily controlled by the lake level fluctuations, the discharge rate of sediment, and the pre-existing topography/bathymetry. It shows that the sand bodies in the delta front are basically sand sheets, which are mainly distributed near the lake open circulation area due to the shallow water depth of the lake, the gentle slope of the depositional basement and the high frequency of lake-level fluctuations. In addition, the frequency of relative lake level oscillation appears to be a significant controlling factor on the development and divarication of river channels on the upper delta plain. A lower rate of the lake level rise and a faster rate of the lake level fall would cause enhanced river channel development and divarication. This study not only enables us to quantitatively understand the dynamic processes of shallow-water delta systems and the key factors controlling the deltaic development and evolution but also provides a reference model for similar ancient depositional systems in sedimentary basins, where active hydrocarbon exploration is currently being undertaken.
-
表 1 Sedsim输入参数
Table 1. Parameters and parameter values used in Sedsim model
Sedsim命令 输入数据 模拟时间 从公元前1200年到现今,时间插值为5 a 网格尺度 分辨率为1 000 m,网格数为182×164 流体密度 输入河流的流体密度为1 000 kg/m3,海水密度为1 027 kg/m3 斜坡角度 4种沉积物颗粒水下最大角度:0.000 50、0.000 21、0.000 20和0.000 10最小角度为0.000 10(0.005 70),时间插值为1 a 流体物源 流体元素释放时间插值为1 a,流体速度、沉积物浓度、流体高度以及初始沉积物组分百分含量分别在输入文件中 -
[1] Chen, Z.Y., Warne, A.G., Stanley, D.J., 1992. Late Quaternary Evolution of the Northwestern Nile Delta between the Rosetta Promontory and Alexandria, Egypt. Journal of Coastal Research, 8(3): 527-561. [2] Coleman, J.M., 1988. Dynamic Changes and Processes in the Mississippi River Delta. Geological Society of America Bulletin, 100(7): 999-1015. doi:10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2 [3] Feng, L., Hu, C.M., Chen, X.L., et al., 2011. MODIS Observations of the Bottom Topography and Its Inter-Annual Variability of Poyang Lake. Remote Sensing of Environment, 115(10): 2729-2741. doi: 10.1016/j.rse.2011.06.013 [4] Funabiki, A., Haruyama, S., Nguyen, V.Q., et al., 2007. Holocene Delta Plain Development in the Song Hong (Red River) Delta, Vietnam. Journal of Asian Earth Sciences, 30(3-4): 518-529. doi: 10.1016/j.jseaes.2006.11.013 [5] Gibbs, R.J., Matthews, M.D., Link, D.A., 1971. The Relationship between Sphere Size and Settling Velocity. Journal of Sedimentary Research, 41(1): 7-18. doi: 10.1306/74D721D0-2B21-11D7-8648000102C1865D [6] Granjeon, D., Joseph, P., 1999. Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic Modelling. Society for Sedimentary Geology (SEPM), Special Publications. [7] Griffiths, C.M., Dyt, C., Paraschivoiu, E., et al., 2001. Sedsim in Hydrocarbon Exploration. In: Merriam, D.F., Davis, J.C., eds., Geologic Modelling and Simulation. Springer US, New York, 71-97. [8] Guo, H., Hu, Q., Zhang, Q., 2011. Changes in Hydrological Interactions of the Yangtze River and the Poyang Lake in China during 1957—2008. Acta Geographica Sinica, 66(5): 609-618 (in Chinese with English abstract). http://www.researchgate.net/publication/280017338_Changes_in_hydrological_interactions_of_the_Yangtze_River_and_the_Poyang_Lake_in_China_during_1957-2008 [9] Hori, K., Saito, Y., Zhao, Q., et al., 2001. Sedimentary Facies and Holocene Progradation Rates of the Changjiang (Yangtze) Delta, China. Geomorphology, 41(2-3): 233-248. doi: 10.1016/S0169-555X(01)00119-2 [10] Hu, C.H., 1999. A Historical Study on the Back Flows of Water from the Changjiang River to the Poyang Lake at Hukou, Jiangxi. Acta Geographica Sinica, 54(1): 77-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB901.008.htm [11] Hu, Q., Feng, S., Guo, H., et al., 2007. Interactions of the Yangtze River Flow and Hydrologic Processes of the Poyang Lake, China. Journal of Hydrology, 347(1-2): 90-100. doi: 10.1016/j.jhydrol.2007.09.005 [12] Huang, X., Dyt, C., Griffiths, C., et al., 2012. Numerical Forward Modelling of 'Fluxoturbidite' Flume Experiments Using Sedsim. Marine and Petroleum Geology, 35(1): 190-200. doi: 10.1016/j.marpetgeo.2012.02.012 [13] Li, C., Chen, Q., Zhang, J., et al., 2000. Stratigraphy and Paleoenvironmental Changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(4): 453-469. doi: 10.1016/S1367-9120(99)00078-4 [14] Li, C., Wang, P., Sun, H., et al., 2002. Late Quaternary Incised-Valley Fill of the Yangtze Delta (China): Its Stratigraphic Framework and Evolution. Sedimentary Geology, 152(1-2): 133-158. doi: 10.1016/S037-0738(02)00066-0 [15] Li, F., Dyt, C., Griffiths, C., 2004.3D Modelling of the Isostatic Flexural Deformation. Computers & Geosciences, 30(9-10): 1105-1115. doi: 10.1016/j.cageo.2004.08.005 [16] Li, F., Dyt, C., Griffiths, C., 2006. Multigrain Coastal Sedimentation Model Based on Equilibrium Sediment Distribution: Application to Nourishment Design. Estuarine Coastal Shelf Sci. , 67(4): 543-730. doi. org/10.1016/j. ecss. 2006.01.006 doi: 10.1016/j.ecss.2005.12.008 [17] Li, F., Dyt, C., Griffiths, C., et al., 2007. Predicting Seabed Change as a Function of Climate Change over the Next 50 years in the Australian Southeast? In: Harff, J., Hay, W.W., Tetzlaff, D.M., eds., Coastline Changes: Interrelation of Climate and Geological Processes. GSA Book, New York, 43-64. [18] Li, Z., Saito, Y., Matsumoto, E., et al., 2006a. Climate Change and Human Impact on the Song Hong (Red River) Delta, Vietnam, During the Holocene. Quaternary International, 144(1): 4-28. doi:10.1016/ j.quaint.2005.05.008 [19] Li, Z., Saito, Y., Matsumoto, E., et al., 2006b. Palynological Record of Climate Change during the Last Deglaciation from the Song Hong (Red River) Delta, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology, 235(4): 406-430. doi:10.1016/ j.palaeo.2005.11.023 [20] Liang, D., Cheng, L., Li, F., 2005. Numerical Modelling of Scour below a Pipeline in Currents. Coastal Engineering, 52(1): 43-62. doi: 10.1016/j.coastaleng.2004.09.001 [21] Liu, K., Griffiths, C.M., Dyt, C., 2001. Computer Modelling of the Oxfordian Depositional System in the Kendrew Trough, Dampier Sub-basin. The APPEA Journal, 41(1): 463-481. doi: 10.1071/AJ00022 [22] Ma, Y.L., Wei, Q.X., 2002. The Sedimentation Mechanism and Development Model of the Ganjiang Delta. The Chinese Journal of Geological Hazard and Control, 13(4): 33-38 (in Chinese with English abstract). [23] Ma, Z.X., Huang, J.H., Wei, Y., et al., 2004. Organic Carbon Isotope Records of the Poyang Lake Sediments and Their Implications for the Paleoclimate during the Last 8 ka. Geochimica, 33(3): 279-285 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200403006.htm [24] Nguyen, V.L., Ta, T.K.O., Tateishi, M., 2000. Late Holocene Depositional Environments and Coastal Evolution of the Mekong River Delta, Southern Vietnam. Journal of Asian Earth Sciences, 18(4): 427-439. doi: 10.1016/S1367-9120(99)00076-0 [25] Saito, Y., Wei, H., Zhou, Y., et al., 2000. Delta Progradation and Chenier Formation in the Huanghe (Yellow River) Delta, China. Journal of Asian Earth Sciences, 18(4): 489-497. doi: 10.1016/S1367-9120(99)00080-2 [26] Saito, Y., Yang, Z., Hori, K., 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) Deltas: a Review on Their Characteristics, Evolution and Sediment Discharge during the Holocene. Geomorphology, 41(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0 [27] Salles, T., Marchès, E., Dyt, C., et al., 2010. Simulation of the Interactions between Gravity Processes and Contour Currents on the Algarve Margin (South Portugal) Using the Stratigraphic Forward Model Sedsim. Sedimentary Geology, 229(3): 95-109. doi: 10.1016/j.sedgeo.2009.05.007 [28] Salles, T., Mulder, T., Gaudin, M., et al., 2008. Simulating the 1999 Capbreton Canyon Turbidity Current with a Cellular Automata Model. Geomorphology, 97(3-4): 516-537. doi: 10.1016/j.geomorpf.2007.09.005 [29] Shankman, D., Keim, B.D., Song, J., 2006. Flood Frequency in China's Poyang Lake region: Trends and Teleconnections. International Journal of Climatology, 26(9): 1255-1266. doi: 10.1002/joc.1307 [30] Stanley, D.J., Warne, A.G., 1994. Worldwide Initiation of Holocene Marine Deltas by Deceleration of Sea-Level Rise. Science, 265(5169): 228-231. doi: 10.1126/science.265.5169.228 [31] Ta, T.K.O., Nguyen, V.L., Tateishi, M., et al., 2001. Sedimentary Facies, Diatom and Foraminifer Assemblages in a Late Pleistocene Holocene Incised-Valley Sequence from the Mekong River Delta, Bentre Province, Southern Vietnam: the BT2 Core. Journal of Asian Earth Sciences, 20(1): 83-94. doi: 10.1016/S1367-9120(01)00028-1 [32] Ta, T.K.O., Nguyen, V.L., Tateishi, M., et al., 2002. Holocene Delta Evolution and Sediment Discharge of the Mekong River, South Vietnam. Quaternary Science Reviews, 21(16-17): 1807-1819. doi:10.1016/ S0277-3791(02)00007-0 [33] Tanabe, S., Hori, K., Saito, Y., et al., 2003. Song Hong (Red River) Delta Evolution Related to Millennium-Scale Holocene Sea-level Changes. Quaternary Science Reviews, 22(21-22): 2345-2361. doi: 10.1016/S0277-3791(03)00138-0 [34] Tanabe, S., Saito, Y., Vu, Q.L., et al., 2006. Holocene Evolution of the Song Hong (Red River) Delta System, Northern Vietnam. Sedimentary Geology, 187(1-2): 29-61. doi: 10.1016/j.sedgeo.2005.12.004 [35] Tetzlaff, D.M., Harbaugh, J.W., 1989. Simulating Clastic Sedimentation. Van Nostrand Reinhold, New York, 196. [36] Zhang, C.S., Chen, Q.S., 1996. Holocene Sedimentary Environment and Characteristics in the Poyang Lake. Journal of Jianghan Petroleum Institute, 18(1): 24-29 (in Chinese with English abstract). http://www.researchgate.net/publication/284543451_Holocene_sedimentary_environment_and_characteristics_in_the_Poyang_Lake [37] Zhang, C.S., Liu, Z.B., 1997. Deposits and Simulation Experiment of Modern Rivers and Lakes. Geological Press, Beijing. [38] Zhu, H.H., Zheng, C.S., Wang, Y.F., et al., 1981. A study of the Sedimentary Facies of the Deltas in Poyang Lake. Oil & Gas Geology, 2(2): 89-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT198102000.htm [39] Zong, Y., Huang, K., Yu, F., et al., 2012. The Role of Sea-Level Rise, Monsoonal Discharge and the Palaeolandscape in the Early Holocene Evolution of the Pearl River Delta, Southern China. Quaternary Science Reviews, 54: 77-88. doi:10.1016/ j.quascirev.2012.01.002 [40] Zou, C.N., Zhao, W.Z., Zhang, X.Y., et al., 2008. Formation and Distribution of Shallow-Water Deltas and Central basin Sandbodies in Large Open Depression Lake Basins. Acta Geologica Sinica, 82(6): 813-825 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806012.htm [41] 郭华, Hu, Q., 张奇, 2011. 近50年来长江与鄱阳湖水文相互作用的变化. 地理学报, 66(5): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201105007.htm [42] 胡春华, 1999. 历史时期鄱阳湖湖口长江倒灌分析. 地理学报, 54(1): 77-82. doi: 10.3321/j.issn:0375-5444.1999.01.009 [43] 马逸麟, 危泉香, 2002. 赣江三角洲的沉积机制及生长模式. 中国地质灾害与防治学报, 13(4): 33-38. doi: 10.3969/j.issn.1003-8035.2002.04.006 [44] 马振兴, 黄俊华, 魏源, 等, 2004. 鄱阳湖沉积物近8 ka来有机质碳同位素记录及其古气候变化特征. 地球化学, 33(3): 279-285. doi: 10.3321/j.issn:0379-1726.2004.03.007 [45] 张春生, 陈庆松, 1996. 全新世郑阳湖沉积环境及沉积特征. 江汉石油学院学报, 18(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX601.004.htm [46] 张春生, 刘忠保, 1997. 现代河湖沉积与模拟实验. 北京: 地质出版社. [47] 朱海虹, 郑长苏, 王云飞, 等, 1981. 鄱阳湖现代三角洲沉积相研究. 石油与天然气地质, 2(2): 89-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198102000.htm [48] 邹才能, 赵文智, 张兴阳, 等, 2008. 敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806012.htm