• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    拆离断层与大洋核杂岩: 一种新的海底扩张模式

    余星 初凤友 董彦辉 李小虎 唐立梅

    余星, 初凤友, 董彦辉, 李小虎, 唐立梅, 2013. 拆离断层与大洋核杂岩: 一种新的海底扩张模式. 地球科学, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
    引用本文: 余星, 初凤友, 董彦辉, 李小虎, 唐立梅, 2013. 拆离断层与大洋核杂岩: 一种新的海底扩张模式. 地球科学, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
    YU Xing, CHU Feng-you, DONG Yan-hui, LI Xiao-hu, TANG Li-mei, 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
    Citation: YU Xing, CHU Feng-you, DONG Yan-hui, LI Xiao-hu, TANG Li-mei, 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097

    拆离断层与大洋核杂岩: 一种新的海底扩张模式

    doi: 10.3799/dqkx.2013.097
    基金项目: 

    国家海洋局青年基金项目 2011304

    国家重点基础研究发展计划 2013CB429705

    浙江省青年基金项目 LQ12D02001

    国家基本科研业务费专项 JT1001

    海洋公益性行业科研专项 201005003

    大洋"十二五"项目 DY125-12-R-04

    详细信息
      作者简介:

      余星(1981-), 男, 副研究员, 主要从事岩石地球化学与海底资源成矿研究.E-mail: zjuyuxing@gmail.com

    • 中图分类号: P736.1

    Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading

    • 摘要: 近年来, 一种新的海底扩张模式引起了广大科学家的重视.它与一般的岩浆型洋中脊扩张不同, 属于一种非岩浆或贫岩浆的海底扩张方式, 扩张作用主要通过拆离断层的滑移来实现.拆离断层使下盘的深部洋壳或上地幔岩石出露到海底, 形成了大洋核杂岩, 通常表面呈现龟背似的波瓦状穹隆, 或称巨型窗棱构造.从拆离断层、大洋核杂岩等基本概念入手, 综述这种新型海底扩张模式的特征, 总结归纳大洋核杂岩的分布状况及识别手段, 探讨其地质意义以及对海底热液活动、成矿的积极影响.

       

    • 图  1  全球已发现的大洋核杂岩分布图(数据说明见表 1)

      星号代表大洋核杂岩分布地点

      Fig.  1.  Location of known oceanic core complexes around the world

      图  2  中印度洋脊25°S大洋核杂岩三维地形地貌特征(Morishita et al., 2009)

      Fig.  2.  The topography of 25°S oceanic core complex along Central Indian Ridge

      图  3  大西洋中脊15°20′N断裂带附近的残余地幔布格异常(a)和地壳磁化强度(b)(Fujiwara et al., 2003)

      星号代表大洋核杂岩出露地点;横向虚线代表洋脊分段界线;N1、S1等为洋脊段号;a图中的磁条带年龄数值为Ma;b图中1r、2n等代表磁异常条带;n代表正极性;r代表负极性

      Fig.  3.  Residual mantle Bouguer anomaly (a) and crustal magnetization calculated from magnetic anomaly (b) of the area near the fifteen-twenty fracture zone, mid-Atlantic ridge

      图  4  大西洋洋中脊TAG区微地震震中平面分布和P波速度模型(deMartin et al., 2007)

      左图中小黑点代表微地震震中;棕色五角星代表TAG活动热液喷口;白色圈代表OBS布站位置;红色区块代表新生火山区;AA'为右图剖面线位置.右图中黄色线代表拆离断层及反向正断层的可能展布

      Fig.  4.  Locations of microearthquake epicenters and P-wave velocity model at TAG segment along mid-Atlantic ridge

      图  5  以拆离断层和大洋核杂岩为特征的Chapman模式(Canales and Escartin, 2010)

      Fig.  5.  Cartoon showing the 'Chapman model' of sea floor spreading featured in detachment fault and oceanic core complexes

      表  1  全球已发现的大洋核杂岩分布信息

      Table  1.   Distribution information of known oceanic core complexes around the world

      地域 出露位置 经度 纬度 构造特征 岩石类型 相关热液区 参考文献
      大西洋洋中脊 Saldanha Massif 33°26′W 36°40′N 具有穹隆状构造,但窗棱构造不明显 地幔岩、蛇纹岩、玄武岩、碎石 Saldanha Miranda et al., 2002
      Atlantis Massif 42°10′W 30°08′N Atlantis转换断层以北,波瓦状穹隆构造 致密绿色橄榄岩,玄武岩、辉长岩、蛇纹岩、岩屑 Lost City Cann et al., 1997; Ranero and Reston, 1999; Blackman et al., 2002; Nooner et al., 2003; Canales et al., 2004; Ildefonse et al., 2007
      27°N 47°00′W 26°45′N Atlantis和Kane转换断层之间,波瓦状构造 蛇纹石化橄榄岩(重力推测) McKnight, 2001
      TAG 44°46′W 26°10′N 拆离断层,穹隆构造 辉长岩、辉绿岩,蛇纹石化橄榄岩(地震波速推断) TAG Canales et al., 2007; deMartin et al., 2007; Escartin et al., 2008
      Kane 45°03′W 23°32′N Kane转换断层以南,显著的波瓦状构造(Kane巨型窗棱构造) 蛇纹石橄榄岩、糜棱化和角闪石化的辉长岩、蛇纹岩 Snake Pit Karson and Dick, 1983; Tucholke et al., 2008; Dannowski et al., 2010; Cheadle and Grimes, 2010
      15°45′N 46°54′W 15°45′N 15°20′N转换断层以北,波瓦状构造 辉长岩、蛇纹石化橄榄岩、辉绿岩 Logatchev MacLeod et al., 2002; Fujiwara et al., 2003; McCaig et al., 2007; Smith et al., 2003; Bach et al., 2011
      St Peter Saint Paul 29°18′W 0°48′N St Paul转换断层,Brachiosaurus巨型窗棱构造 深海橄榄岩 Sichel et al., 2008
      5°S 11°42′W 5°10′S 5°S转换断层 蛇纹岩、辉长岩、玄武岩 Reston et al., 2002
      Ascension 12°30′W 7°12′S Ascension转换断层 辉长岩、橄榄岩、蛇纹岩 Steinfeld et al., 2009
      卡尔斯伯格海岭 Carlsberg Ridge 58°~62°E 9°~5°N 韩喜球等, 2012, 个人通讯
      中印度洋脊 Vityaz 68°30′E 5°30′S Vityaz转换断层,Vityaz巨型窗棱构造 辉长岩 Ray et al., 2011
      25°SUraniwa-Hills 69°50′E 25°18′S 靠近Rodriguez三联点,显著的窗棱构造 地幔橄榄岩、辉长岩等,橄长岩 Kairei Mitchell et al., 1998; Morishita, 2009; Nakamura et al., 2009
      西南印度洋脊 FUJI Dome 63°45′E 28°03′S 呈现波瓦状构造 玄武岩、辉长岩、蛇纹石化方辉橄榄岩 MontJourdanne Searle et al., 2003; Sauter et al., 2008
      Atlantis Bank 57°16′E 32°43′S Atlantis Ⅱ转换断层 橄榄辉长岩、辉长岩、氧化辉长岩 Dick et al., 2000; Baines et el., 2003
      东南印度洋脊 AAD SegmentB3, Segment B4 125°40′E 49°35′S Warringa转换断层 地幔橄榄岩、辉长岩、绿片岩等 Christie et al., 1998; Okino et al., 2004
      菲律宾海帕里西维拉海脊 Segment S1 139°E 16°N Godzilla巨型窗棱构造 地幔橄榄岩 Parece VelaRidge Ohara et al., 2001, 2011
      智利海隆 Chile Rise 84°50′W 41°31′S Martinez et al., 1998
      下载: 导出CSV
    • [1] Bach, W., Rosner, M., Jöns, N., et al., 2011. Carbonate Veins Trace Seawater Circulation during Exhumation and Uplift of Mantle Rock: Results from ODP Leg 209. Earth and Planetary Science Letters, 311(3-4): 242-252. doi: 10.1016/j.epsl.2011.09.021
      [2] Baines, A.G., Cheadle, M.J., Dick, H.J.B., et al., 2003. Mechanism for Generating the Anomalous Uplift of Oceanic Core Complexes: Atlantis Bank, Southwest Indian Ridge. Geology, 31(12): 1105-1108. doi: 10.1130/G19829.1
      [3] Blackman, D.K., Canales, J.P., Harding, A., 2009. Geophysical Signatures of Oceanic Core Complexes. Geophysical Journal International, 178(2): 593-613. doi: 10.1111/J.1365-246X.2009.04184.X
      [4] Blackman, D.K., Cann, J.R., Janssen, B., et al., 1998. Origin of Extensional Core Complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. J. Geophys. Res. , 103(B9): 21315-21333. doi: 10.1029/98JB01756
      [5] Blackman, D.K., Ildefonse, B., John, B.E., et al., 2006. Oceanic Core Complex Formation, in Atlantis Massif, Vol. 304/305. Ocean Drilling Program College Station, TX.
      [6] Blackman, D.K., Karner, G., Searle, R.C., 2008. Three-Dimensional Structure of Oceanic Core Complexes: Effects on Gravity Signature and Ridge Flank Morphology, Mid-Atlantic Ridge 30°N. Geochem. Geophys. Geosyst. , 9(6): Q06007. doi: 10.1029/2008GC001951
      [7] Blackman, D.K., Karson, J.A., Kelley, D.S., et al., 2002. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the Evolution of an Ultramafic Oceanic Core Complex. Marine Geophysical Researches, 23(5-6): 443-469. doi: 10.1023/B:MARI.0000018232.14085.75
      [8] Canales, J.P., Escartin, J., 2010. Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems. Chapman Conference Report, Cyprus.
      [9] Canales, J.P., Sohn, R.A., deMartin, B.J., 2007. Crustal Structure of the Trans-Atlantic Geotraverse (TAG) Segment (Mid-Atlantic Ridge, 26°10'N): Implications for the Nature of Hydrothermal Circulation and Detachment Faulting at Slow Spreading Ridges. Geochem. Geophys. Geosyst. , 8(8): Q08004. doi: 10.1029/2007GC001629
      [10] Canales, J.P., Tucholke, B.E., Collins, J.A., 2004. Seismic Reflection Imaging of an Oceanic Detachment Fault: Atlantis Megamullion (Mid-Atlantic Ridge, 30°10'N). Earth and Planetary Science Letters, 222(2): 543-560. doi: 10.1016/j.epsl.2004.02.023
      [11] Canales, J.P., Tucholke, B.E., Xu, M., et al., 2008. Seismic Evidence for Large-Scale Compositional Heterogeneity of Oceanic Core Complexes. Geochem. Geophys. Geosyst. , 9(8): Q8002. doi: 10.1029/2008GC002009
      [12] Cann, J.R., Blackman, D.K., Smith, D.K., et al., 1997. Corrugated Slip Surfaces Formed at Ridge-Transform Intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332. doi: 10.1038/385329a0
      [13] Cheadle, M., Grimes, C., 2010. To Fault or not to Fault. Nature Geoscience, 3(7): 454-456. doi: 10.1038/ngeo910
      [14] Christie, D.M., West, B.P., Pyle, D.G., et al., 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antartic discordance. Nature, 394: 637-644. doi: 10.1038/29226
      [15] Dannowski, A., Grevemeyer, I., Ranero, C.R., et al., 2010. Seismic Structure of an Oceanic Core Complex at the Mid-Atlantic Ridge, 22°19'N. J. Geophys. Res. , 115(B7): B7106. doi: 10.1029/2009JB006943
      [16] Davis, G.A., 1988. Rapid Upward Transport of Mid-Crustal Mylonitic Gneisses in the Footwall of a Miocene Detachment Fault, Whipple Mountains, Southeastern California. Geologische Rundschau, 77(1): 191-209. doi: 10.1007/BF0184868
      [17] Davis, G.H., Coney, P.J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. doi:10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2
      [18] Davis, G.H., Reynolds, S.J., Kluth, C.F., 1996. Structural Geology of Rocks and Regions, 2nd Edition. John Wiley and Sons Inc, New York.
      [19] deMartin, B.J., Sohn, R.A., Canales, J.P., et al., 2007. Kinematics and Geometry of Active Detachment Faulting Beneath the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge. Geology, 35(8): 711-714. doi: 10.1130/G23718A.1
      [20] Dick, H.J.B., Bryan, W.B., Thompson, G., 1981. Low-Angle Faulting and Steady-State Emplacement of Plutonic Rocks at Ridge-Transform Intersections: Eos, Transactions. American Geophysical Union, Washington D.C. . http://www.mendeley.com/research/lowangle-faulting-steadystate-emplacement-plutonic-rocks-ridgetransform-intersections/
      [21] Dick, H.J.B., Natland, J.H., Alt, J.C., et al., 2000. A Long in Situ Section of the Lower Ocean Crust: Results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31–51. doi: 10.1016/S0012-821X(00)00102-3
      [22] Dick, H.J.B., Natland, J.H., Miller, D.J., et al., 1999. Proceedings of the Ocean Drilling Program, Initial Reports, Leg 176 Summary. ODP College Station, TX. http://epic.awi.de/965/
      [23] Escartin, J., Cowie, P.A., Searle, R.C., et al., 1999. Quantifying Tectonic Strain and Magmatic Accretion at a Slow Spreading Ridge Segment, Mid-Atlantic Ridge, 29°N. J. Geophys. Res. , 104(B5): 10421-10437. doi: 10.1029/1998JB900097
      [24] Escartin, J., Smith, D.K., Cann, J., et al., 2008. Central Role of Detachment Faults in Accretion of Slow-Spreading Oceanic Lithosphere. Nature, 455(7214): 790-794. doi: 10.1038/nature07333
      [25] Fossen, H., 1992. The Role of Extensional Tectonics in the Caledonides of South Norway. Journal of Structural Geology, 14(8-9): 1033-1046. doi: 10.1016/0191-8141(92)90034-T
      [26] Fujiwara, T., Lin, J., Matsumoto, T., et al., 2003. Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the Last 5 Ma. Geochem. Geophys. Geosyst, 4(3): 1024. doi: 10.1029/2002GC000364
      [27] Gebelin, A., Mulch, A., Teyssier, C., et al., 2011. Oligo-Miocene Extensional Tectonics and Fluid Flow across the Northern Snake Range Detachment System, Nevada. Tectonics, 30(5): 1-18. doi: 10.1029/2010TC002797
      [28] Hess, H.H., 1962. History of Ocean Basins. In: Engel, A.E.J., James, H.L., Leonard, B. F, eds., Petrologic Studies: A Volume in Honor of A.F. Buddington. Geological Society of America, Boulder, 599-620.
      [29] Ildefonse, B., Blackman, D.K., John, B.E., et al., 2007. Oceanic Core Complexes and Crustal Accretion at Slow-Spreading Ridges. Geology, 35(7): 623-626. doi: 10.1130/G23531A.1
      [30] Karson, J.A., Dick, H., 1983. Tectonics of Ridge-Transform Intersections at the Kane Fracture Zone. Marine Geophysical Research, 6(1): 51-98. doi: 10.1007/BF00300398
      [31] Kelemen, P.B., Kikawa, E., Miller, D.J., et al., 2004. Proceedings of the ODP, Initial Reports 209. Ocean Drilling Program, College Station, TX, 1268-1275.
      [32] Li, S.Z., Lv, H.Q., Hou, F.H., et al., 2006. Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52(in Chinese with English abstract).
      [33] Li, W.X., Xie, G.G., 1996. An Outline of Metamorphic Core Complex. Geology of Jiangxi, 10(2): 149-159(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXDZ602.008.htm
      [34] Liu, D.M., Li, D.W., 2003. Detachment Faults in Dingjie Area, Middle Segment of Himalayan Orogenic Belt. Geotectonica et Metallogenia, 27(1): 37-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200301005&dbcode=CJFD&year=2003&dflag=pdfdown
      [35] Lou, F.S., Shu, L.S., Wang, D.Z., 2005. Recent Progress in Study of Metamorphic Core Complex. Geological Journal of China Universities, 11(1): 67-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200501004.htm
      [36] MacLeod, C.J., Escartin, J., Banerji, D., et al., 2002. Direct Geological Evidence for Oceanic Detachment Faulting: The Mid-Atlantic Ridge, 15°45'N. Geology, 30(10): 879-882. doi:10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2
      [37] Martinez, F., Karsten, J., Klein, E.M., 1998. Recent Kinematics and Tectonics of the Chile Ridge, Eos Trans. Am. Geophys. Un. , 79(45): F836. http://ci.nii.ac.jp/naid/20000671822
      [38] McCaig, A.M., Cliff, R.A., Escartin, J., et al., 2007. Oceanic Detachment Faults Focus Very Large Volumes of Black Smoker Fluids. Geology, 35(10), 935-938. doi: 10.1130/G23657A.1
      [39] McCaig, A.M., Delacour A., Fallick, A.E., et al., 2010. Detachment Fault Control on Hydrothermal Circulation Systems: Interpreting the Subsurface beneath the TAG Hydrothermal Field Using the Isotopic and Geological Evolution of Oceanic Core Complexes in the Atlantic. In: Rona, P.A., Devey, C.W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D.C. .
      [40] McKnight, A.R., 2001. Structure and Evolution of an Oceanic Megamullion on the Mid-Atlantic ridge at 27°N (Dissertation). Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge.
      [41] Miller, E.L., Gans, P.B., 1983. The Snake Range Decollement Interpreted as a Major Extensional Shear Zone. Tectonics, 2(3): 239-263. doi: 10.1029/TC003i006p00647
      [42] Miranda, J.M., Silva, P.F., Lourencco, N., et al., 2002. Study of the Saldanha Massif (MAR, 36°34'N): Constraints from Rock Magnetic and Geophysical Data. Mar. Geophys. Res. , 23(4), 299-318. doi: 10.1023/A:1025711502122
      [43] Mitchell, N.C., Escartin, J., Allerton, S., 1998. Detachment Faults at Mid-Ocean Ridges Garner Interest. Eos, Trans. AGU, 79(10): 127. doi: 10.1029/98EO00095
      [44] Morishita, T., Hara, K., Nakamura, K., et al., 2009. Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge. Journal of Petrology, 50(7): 1299-1325. doi: 10.1093/petrology/egp025
      [45] Nakamura, K., Morishita, T., Bach, W., et al., 2009. Serpentinized Troctolites Exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the Origin of the Kairei Hydrothermal Fluid Supporting a Unique Microbial Ecosystem. Earth and Planetary Science Letters, 280 (1-4): 128-136. doi: 10.1016/j.epsl.2009.01.024
      [46] Nooner, S.L., Sasagawa, G.S., Blackman, D.K., et al., 2003. Structure of Oceanic Core Complexes: Constraints from Seafloor Gravity Measurements Made at the Atlantis Massif. Geophysical Research Letter, 30(8): 1446. doi: 10.1029/2003GL017126
      [47] Ohara, Y., Yoshida, T., Kato, Y., et al., 2001. Giant Megamullion in the Parece Vela Backarc Basin. Marine Geophysical Research, 22(1): 47-61. doi: 10.1023/A:1004818225642
      [48] Ohara, Y., Okino, K., Snow, J.E., 2011. Tectonics of Unusual Crustal Accretion in the Parece Vela Basin. In: Ogawa, Y., Anma, R., Dilek, Y., eds., Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, Modern Approaches in Solid Earth Sciences. Springer, Netherlands, 8: 149-168.
      [49] Okino, K., Matsuda, K., Christie, D.M., et al., 2004. Development of Oceanic Detachment and Asymmetric Spreading at the Australian-Antarctic Discordance. Geochem. Geophys. Geosyst. , 5(12): Q12012. doi: 10.1029/2004GC000793
      [50] Ranero, C.R., Reston, T.J., 1999. Detachment Faulting at Ocean Core Complexes. Geology, 27(11): 983-986. doi:10.1130/0091-7613(1999)027<0983:DFAOCC>2.3.CO;2
      [51] Ray, D., Misra, S., Banejee, R., et al., 2011. Geochemical Implications of Gabbro from the Slow-Spreading Northern Central Indian Ocean Ridge, Indian Ocean. Geological Magazine, 148(3): 404-422. doi: 10.1017/S001675681000083X
      [52] Reston, T.J., Weinrebe, W., Grevemeyer, I., et al., 2002. A Rifted inside Corner Massif on the Mid-Atlantic Ridge at 5°S. Earth Planet. Sci. Lett. , 200(3-4): 255-269. doi: 10.1016/S0012-821X(02)00636-2
      [53] Sauter, D., Cannat, M., Mendel, V., 2008. Magnetization of 0-26.5 Ma Seafloor at the Ultraslow-Spreading Southwest Indian Ridge 61°-67°E. Geochem. Geophys. Geosyst. , 9(4): Q04002. doi: 10.1029/2007GC001764
      [54] Searle, R.C., Cannat, M., Fujioka, K., et al., 2003. FUJI Dome: A Large Detachment Fault near 64°E on the Very Slow-Spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. , 4(8): 9105. doi: 10.1029/2003GC000519
      [55] Shen, L., Liu, J.L., Hu, L., et al., 2011. The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance. Science in China (Ser. D), 41(4): 437-451 (in Chinese). http://www.springerlink.com/content/x652765040670774/
      [56] Sichel, S.E., Esperança, S., Motoki, A., et al., 2008. Geophysical and Geochemical Evidence for Cold Upper Mantle beneath the Equatorial Atlantic Ocean. Revista Brasileira de Geofísica, 26(1): 69-86. doi. org/10.1590/S0102-261X2008000100006 doi: 10.1590/S0102-261X2008000100006
      [57] Smith, D.K., Escartin, J., Cannat, M., et al., 2003. Spatial and Temporal Distribution of Seismicity along the Northernmid-Atlantic Ridge (15°-35°N). J. Geophys. Res. , 108(B3): 2167. doi: 10.1029/2002JB001964
      [58] Steinfeld, R., Rhein, M., Brandt, P., et al., 2009. Oceanography, Geology and Geophysics of the South Equatorial Atlantic: Cruise No. 62, June 24-December 30, 2004, Ponta Delgada (Portugal)- Walvis Bay (Namibia). Universität Hamburg, Leitstelle Meteor/Merian.
      [59] Tucholke, B.E., Behn, M.D., Buck, W.R., et al., 2008. Role of Melt Supply in Oceanic Detachment Faulting and Formation of Megamullions. Geology, 36(6): 455-458. doi: 10.1130/G24639A.1
      [60] Tucholke, B.E., Lin, J., Kleinrock, M.C., 1998. Megamullions and Mullion Structure Defining Oceanic Metamorphic Core Complexes on the Mid-Atlantic Ridge. J. Geophys. Res. , 103(B5): 9857-9866. doi: 10.1029/98JB00167
      [61] Yao, L.J., Yan, D.P., Hu, L., 2007. Structure Style and Temperature-Pressure Estimation of the Detachment Fault Zone around Fangshan Dome, Western Hills of Beijing. Earth Science— Journal of China University of Geosciences, 32(3): 357-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703007.htm
      [62] Zheng, Y.D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geological Sinica, 67(4): 301-309(in Chinese with English abstract). http://www.cqvip.com/QK/86253X/19942/1005047324.html
      [63] 李三忠, 吕海青, 侯方辉, 等, 2006. 海洋核杂岩. 海洋地质与第四纪地质, 26 (1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200601012.htm
      [64] 李武显, 谢国刚, 1996. 变质核杂岩概述. 江西地质, 10(2): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ602.008.htm
      [65] 刘德民, 李德威, 2003. 喜马拉雅造山带中段定结地区拆离断层. 大地构造与成矿学, 27(1): 37-42. doi: 10.3969/j.issn.1001-1552.2003.01.005
      [66] 楼法生, 舒良树, 王德滋, 2005. 变质核杂岩研究进展. 高校地质学报, 11(1): 67-76. doi: 10.3969/j.issn.1006-7493.2005.01.005
      [67] 申亮, 刘俊来, 胡玲, 等, 2011. 辽东半岛大营子拆离断层系及其区域构造意义. 中国科学(D辑), 41(4): 437-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201104003.htm
      [68] 姚丽景, 颜丹平, 胡玲, 2007. 房山变质核杂岩基底拆离断层韧性剪切变形构造及环境分析. 地球科学——中国地质大学学报, 32(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703007.htm
      [69] 郑亚东, 张青, 1993. 内蒙古亚干变质核杂岩与伸展拆离断层. 地质学报, 67(4): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199304001.htm
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  3688
    • HTML全文浏览量:  174
    • PDF下载量:  328
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-02-10
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回