Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading
-
摘要: 近年来, 一种新的海底扩张模式引起了广大科学家的重视.它与一般的岩浆型洋中脊扩张不同, 属于一种非岩浆或贫岩浆的海底扩张方式, 扩张作用主要通过拆离断层的滑移来实现.拆离断层使下盘的深部洋壳或上地幔岩石出露到海底, 形成了大洋核杂岩, 通常表面呈现龟背似的波瓦状穹隆, 或称巨型窗棱构造.从拆离断层、大洋核杂岩等基本概念入手, 综述这种新型海底扩张模式的特征, 总结归纳大洋核杂岩的分布状况及识别手段, 探讨其地质意义以及对海底热液活动、成矿的积极影响.Abstract: A new type of seafloor spreading mode has recently been well acknowledged among earth science community. It is different from normal magmatic spreading ridge. It is usually found along the slow or ultraslow spreading ridge where the segment is amagmatic or depleted in magma. The plate separation is mostly accommodated by detachment fault slipping. The low-angle large-offset detachment fault will uplift the footwall and exhume lower crust and upper mantle rocks, which is called oceanic core complex. The oceanic core complex, also named as megamullion, is often marked by corrugations and striations parallel to the extension direction. This paper presents the characteristics of this new kind of spreading mode based on in-depth argument about terminology of detachment fault and oceanic core complex. A distribution map of the known oceanic core complex has been composed. The possible methods and techniques that can be used to recognize oceanic core complexes are also discussed in this study, and so does the significance of the new findings and its influence on seafloor hydrothermal activity and mineral deposit.
-
Key words:
- detachment fault /
- oceanic core complex /
- megamullion /
- seafloor spreading /
- tectonics /
- hydrothermal activity /
- petrology
-
图 1 全球已发现的大洋核杂岩分布图(数据说明见表 1)
星号代表大洋核杂岩分布地点
Fig. 1. Location of known oceanic core complexes around the world
图 2 中印度洋脊25°S大洋核杂岩三维地形地貌特征(Morishita et al., 2009)
Fig. 2. The topography of 25°S oceanic core complex along Central Indian Ridge
图 3 大西洋中脊15°20′N断裂带附近的残余地幔布格异常(a)和地壳磁化强度(b)(Fujiwara et al., 2003)
星号代表大洋核杂岩出露地点;横向虚线代表洋脊分段界线;N1、S1等为洋脊段号;a图中的磁条带年龄数值为Ma;b图中1r、2n等代表磁异常条带;n代表正极性;r代表负极性
Fig. 3. Residual mantle Bouguer anomaly (a) and crustal magnetization calculated from magnetic anomaly (b) of the area near the fifteen-twenty fracture zone, mid-Atlantic ridge
图 4 大西洋洋中脊TAG区微地震震中平面分布和P波速度模型(deMartin et al., 2007)
左图中小黑点代表微地震震中;棕色五角星代表TAG活动热液喷口;白色圈代表OBS布站位置;红色区块代表新生火山区;AA'为右图剖面线位置.右图中黄色线代表拆离断层及反向正断层的可能展布
Fig. 4. Locations of microearthquake epicenters and P-wave velocity model at TAG segment along mid-Atlantic ridge
图 5 以拆离断层和大洋核杂岩为特征的Chapman模式(Canales and Escartin, 2010)
Fig. 5. Cartoon showing the 'Chapman model' of sea floor spreading featured in detachment fault and oceanic core complexes
表 1 全球已发现的大洋核杂岩分布信息
Table 1. Distribution information of known oceanic core complexes around the world
地域 出露位置 经度 纬度 构造特征 岩石类型 相关热液区 参考文献 大西洋洋中脊 Saldanha Massif 33°26′W 36°40′N 具有穹隆状构造,但窗棱构造不明显 地幔岩、蛇纹岩、玄武岩、碎石 Saldanha Miranda et al., 2002 Atlantis Massif 42°10′W 30°08′N Atlantis转换断层以北,波瓦状穹隆构造 致密绿色橄榄岩,玄武岩、辉长岩、蛇纹岩、岩屑 Lost City Cann et al., 1997; Ranero and Reston, 1999; Blackman et al., 2002; Nooner et al., 2003; Canales et al., 2004; Ildefonse et al., 2007 27°N 47°00′W 26°45′N Atlantis和Kane转换断层之间,波瓦状构造 蛇纹石化橄榄岩(重力推测) McKnight, 2001 TAG 44°46′W 26°10′N 拆离断层,穹隆构造 辉长岩、辉绿岩,蛇纹石化橄榄岩(地震波速推断) TAG Canales et al., 2007; deMartin et al., 2007; Escartin et al., 2008 Kane 45°03′W 23°32′N Kane转换断层以南,显著的波瓦状构造(Kane巨型窗棱构造) 蛇纹石橄榄岩、糜棱化和角闪石化的辉长岩、蛇纹岩 Snake Pit Karson and Dick, 1983; Tucholke et al., 2008; Dannowski et al., 2010; Cheadle and Grimes, 2010 15°45′N 46°54′W 15°45′N 15°20′N转换断层以北,波瓦状构造 辉长岩、蛇纹石化橄榄岩、辉绿岩 Logatchev MacLeod et al., 2002; Fujiwara et al., 2003; McCaig et al., 2007; Smith et al., 2003; Bach et al., 2011 St Peter Saint Paul 29°18′W 0°48′N St Paul转换断层,Brachiosaurus巨型窗棱构造 深海橄榄岩 Sichel et al., 2008 5°S 11°42′W 5°10′S 5°S转换断层 蛇纹岩、辉长岩、玄武岩 Reston et al., 2002 Ascension 12°30′W 7°12′S Ascension转换断层 辉长岩、橄榄岩、蛇纹岩 Steinfeld et al., 2009 卡尔斯伯格海岭 Carlsberg Ridge 58°~62°E 9°~5°N 韩喜球等, 2012, 个人通讯 中印度洋脊 Vityaz 68°30′E 5°30′S Vityaz转换断层,Vityaz巨型窗棱构造 辉长岩 Ray et al., 2011 25°SUraniwa-Hills 69°50′E 25°18′S 靠近Rodriguez三联点,显著的窗棱构造 地幔橄榄岩、辉长岩等,橄长岩 Kairei Mitchell et al., 1998; Morishita, 2009; Nakamura et al., 2009 西南印度洋脊 FUJI Dome 63°45′E 28°03′S 呈现波瓦状构造 玄武岩、辉长岩、蛇纹石化方辉橄榄岩 MontJourdanne Searle et al., 2003; Sauter et al., 2008 Atlantis Bank 57°16′E 32°43′S Atlantis Ⅱ转换断层 橄榄辉长岩、辉长岩、氧化辉长岩 Dick et al., 2000; Baines et el., 2003 东南印度洋脊 AAD SegmentB3, Segment B4 125°40′E 49°35′S Warringa转换断层 地幔橄榄岩、辉长岩、绿片岩等 Christie et al., 1998; Okino et al., 2004 菲律宾海帕里西维拉海脊 Segment S1 139°E 16°N Godzilla巨型窗棱构造 地幔橄榄岩 Parece VelaRidge Ohara et al., 2001, 2011 智利海隆 Chile Rise 84°50′W 41°31′S Martinez et al., 1998 -
[1] Bach, W., Rosner, M., Jöns, N., et al., 2011. Carbonate Veins Trace Seawater Circulation during Exhumation and Uplift of Mantle Rock: Results from ODP Leg 209. Earth and Planetary Science Letters, 311(3-4): 242-252. doi: 10.1016/j.epsl.2011.09.021 [2] Baines, A.G., Cheadle, M.J., Dick, H.J.B., et al., 2003. Mechanism for Generating the Anomalous Uplift of Oceanic Core Complexes: Atlantis Bank, Southwest Indian Ridge. Geology, 31(12): 1105-1108. doi: 10.1130/G19829.1 [3] Blackman, D.K., Canales, J.P., Harding, A., 2009. Geophysical Signatures of Oceanic Core Complexes. Geophysical Journal International, 178(2): 593-613. doi: 10.1111/J.1365-246X.2009.04184.X [4] Blackman, D.K., Cann, J.R., Janssen, B., et al., 1998. Origin of Extensional Core Complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. J. Geophys. Res. , 103(B9): 21315-21333. doi: 10.1029/98JB01756 [5] Blackman, D.K., Ildefonse, B., John, B.E., et al., 2006. Oceanic Core Complex Formation, in Atlantis Massif, Vol. 304/305. Ocean Drilling Program College Station, TX. [6] Blackman, D.K., Karner, G., Searle, R.C., 2008. Three-Dimensional Structure of Oceanic Core Complexes: Effects on Gravity Signature and Ridge Flank Morphology, Mid-Atlantic Ridge 30°N. Geochem. Geophys. Geosyst. , 9(6): Q06007. doi: 10.1029/2008GC001951 [7] Blackman, D.K., Karson, J.A., Kelley, D.S., et al., 2002. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the Evolution of an Ultramafic Oceanic Core Complex. Marine Geophysical Researches, 23(5-6): 443-469. doi: 10.1023/B:MARI.0000018232.14085.75 [8] Canales, J.P., Escartin, J., 2010. Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems. Chapman Conference Report, Cyprus. [9] Canales, J.P., Sohn, R.A., deMartin, B.J., 2007. Crustal Structure of the Trans-Atlantic Geotraverse (TAG) Segment (Mid-Atlantic Ridge, 26°10'N): Implications for the Nature of Hydrothermal Circulation and Detachment Faulting at Slow Spreading Ridges. Geochem. Geophys. Geosyst. , 8(8): Q08004. doi: 10.1029/2007GC001629 [10] Canales, J.P., Tucholke, B.E., Collins, J.A., 2004. Seismic Reflection Imaging of an Oceanic Detachment Fault: Atlantis Megamullion (Mid-Atlantic Ridge, 30°10'N). Earth and Planetary Science Letters, 222(2): 543-560. doi: 10.1016/j.epsl.2004.02.023 [11] Canales, J.P., Tucholke, B.E., Xu, M., et al., 2008. Seismic Evidence for Large-Scale Compositional Heterogeneity of Oceanic Core Complexes. Geochem. Geophys. Geosyst. , 9(8): Q8002. doi: 10.1029/2008GC002009 [12] Cann, J.R., Blackman, D.K., Smith, D.K., et al., 1997. Corrugated Slip Surfaces Formed at Ridge-Transform Intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332. doi: 10.1038/385329a0 [13] Cheadle, M., Grimes, C., 2010. To Fault or not to Fault. Nature Geoscience, 3(7): 454-456. doi: 10.1038/ngeo910 [14] Christie, D.M., West, B.P., Pyle, D.G., et al., 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antartic discordance. Nature, 394: 637-644. doi: 10.1038/29226 [15] Dannowski, A., Grevemeyer, I., Ranero, C.R., et al., 2010. Seismic Structure of an Oceanic Core Complex at the Mid-Atlantic Ridge, 22°19'N. J. Geophys. Res. , 115(B7): B7106. doi: 10.1029/2009JB006943 [16] Davis, G.A., 1988. Rapid Upward Transport of Mid-Crustal Mylonitic Gneisses in the Footwall of a Miocene Detachment Fault, Whipple Mountains, Southeastern California. Geologische Rundschau, 77(1): 191-209. doi: 10.1007/BF0184868 [17] Davis, G.H., Coney, P.J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. doi:10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2 [18] Davis, G.H., Reynolds, S.J., Kluth, C.F., 1996. Structural Geology of Rocks and Regions, 2nd Edition. John Wiley and Sons Inc, New York. [19] deMartin, B.J., Sohn, R.A., Canales, J.P., et al., 2007. Kinematics and Geometry of Active Detachment Faulting Beneath the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge. Geology, 35(8): 711-714. doi: 10.1130/G23718A.1 [20] Dick, H.J.B., Bryan, W.B., Thompson, G., 1981. Low-Angle Faulting and Steady-State Emplacement of Plutonic Rocks at Ridge-Transform Intersections: Eos, Transactions. American Geophysical Union, Washington D.C. . http://www.mendeley.com/research/lowangle-faulting-steadystate-emplacement-plutonic-rocks-ridgetransform-intersections/ [21] Dick, H.J.B., Natland, J.H., Alt, J.C., et al., 2000. A Long in Situ Section of the Lower Ocean Crust: Results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31–51. doi: 10.1016/S0012-821X(00)00102-3 [22] Dick, H.J.B., Natland, J.H., Miller, D.J., et al., 1999. Proceedings of the Ocean Drilling Program, Initial Reports, Leg 176 Summary. ODP College Station, TX. http://epic.awi.de/965/ [23] Escartin, J., Cowie, P.A., Searle, R.C., et al., 1999. Quantifying Tectonic Strain and Magmatic Accretion at a Slow Spreading Ridge Segment, Mid-Atlantic Ridge, 29°N. J. Geophys. Res. , 104(B5): 10421-10437. doi: 10.1029/1998JB900097 [24] Escartin, J., Smith, D.K., Cann, J., et al., 2008. Central Role of Detachment Faults in Accretion of Slow-Spreading Oceanic Lithosphere. Nature, 455(7214): 790-794. doi: 10.1038/nature07333 [25] Fossen, H., 1992. The Role of Extensional Tectonics in the Caledonides of South Norway. Journal of Structural Geology, 14(8-9): 1033-1046. doi: 10.1016/0191-8141(92)90034-T [26] Fujiwara, T., Lin, J., Matsumoto, T., et al., 2003. Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the Last 5 Ma. Geochem. Geophys. Geosyst, 4(3): 1024. doi: 10.1029/2002GC000364 [27] Gebelin, A., Mulch, A., Teyssier, C., et al., 2011. Oligo-Miocene Extensional Tectonics and Fluid Flow across the Northern Snake Range Detachment System, Nevada. Tectonics, 30(5): 1-18. doi: 10.1029/2010TC002797 [28] Hess, H.H., 1962. History of Ocean Basins. In: Engel, A.E.J., James, H.L., Leonard, B. F, eds., Petrologic Studies: A Volume in Honor of A.F. Buddington. Geological Society of America, Boulder, 599-620. [29] Ildefonse, B., Blackman, D.K., John, B.E., et al., 2007. Oceanic Core Complexes and Crustal Accretion at Slow-Spreading Ridges. Geology, 35(7): 623-626. doi: 10.1130/G23531A.1 [30] Karson, J.A., Dick, H., 1983. Tectonics of Ridge-Transform Intersections at the Kane Fracture Zone. Marine Geophysical Research, 6(1): 51-98. doi: 10.1007/BF00300398 [31] Kelemen, P.B., Kikawa, E., Miller, D.J., et al., 2004. Proceedings of the ODP, Initial Reports 209. Ocean Drilling Program, College Station, TX, 1268-1275. [32] Li, S.Z., Lv, H.Q., Hou, F.H., et al., 2006. Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52(in Chinese with English abstract). [33] Li, W.X., Xie, G.G., 1996. An Outline of Metamorphic Core Complex. Geology of Jiangxi, 10(2): 149-159(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXDZ602.008.htm [34] Liu, D.M., Li, D.W., 2003. Detachment Faults in Dingjie Area, Middle Segment of Himalayan Orogenic Belt. Geotectonica et Metallogenia, 27(1): 37-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200301005&dbcode=CJFD&year=2003&dflag=pdfdown [35] Lou, F.S., Shu, L.S., Wang, D.Z., 2005. Recent Progress in Study of Metamorphic Core Complex. Geological Journal of China Universities, 11(1): 67-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200501004.htm [36] MacLeod, C.J., Escartin, J., Banerji, D., et al., 2002. Direct Geological Evidence for Oceanic Detachment Faulting: The Mid-Atlantic Ridge, 15°45'N. Geology, 30(10): 879-882. doi:10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2 [37] Martinez, F., Karsten, J., Klein, E.M., 1998. Recent Kinematics and Tectonics of the Chile Ridge, Eos Trans. Am. Geophys. Un. , 79(45): F836. http://ci.nii.ac.jp/naid/20000671822 [38] McCaig, A.M., Cliff, R.A., Escartin, J., et al., 2007. Oceanic Detachment Faults Focus Very Large Volumes of Black Smoker Fluids. Geology, 35(10), 935-938. doi: 10.1130/G23657A.1 [39] McCaig, A.M., Delacour A., Fallick, A.E., et al., 2010. Detachment Fault Control on Hydrothermal Circulation Systems: Interpreting the Subsurface beneath the TAG Hydrothermal Field Using the Isotopic and Geological Evolution of Oceanic Core Complexes in the Atlantic. In: Rona, P.A., Devey, C.W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D.C. . [40] McKnight, A.R., 2001. Structure and Evolution of an Oceanic Megamullion on the Mid-Atlantic ridge at 27°N (Dissertation). Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge. [41] Miller, E.L., Gans, P.B., 1983. The Snake Range Decollement Interpreted as a Major Extensional Shear Zone. Tectonics, 2(3): 239-263. doi: 10.1029/TC003i006p00647 [42] Miranda, J.M., Silva, P.F., Lourencco, N., et al., 2002. Study of the Saldanha Massif (MAR, 36°34'N): Constraints from Rock Magnetic and Geophysical Data. Mar. Geophys. Res. , 23(4), 299-318. doi: 10.1023/A:1025711502122 [43] Mitchell, N.C., Escartin, J., Allerton, S., 1998. Detachment Faults at Mid-Ocean Ridges Garner Interest. Eos, Trans. AGU, 79(10): 127. doi: 10.1029/98EO00095 [44] Morishita, T., Hara, K., Nakamura, K., et al., 2009. Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge. Journal of Petrology, 50(7): 1299-1325. doi: 10.1093/petrology/egp025 [45] Nakamura, K., Morishita, T., Bach, W., et al., 2009. Serpentinized Troctolites Exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the Origin of the Kairei Hydrothermal Fluid Supporting a Unique Microbial Ecosystem. Earth and Planetary Science Letters, 280 (1-4): 128-136. doi: 10.1016/j.epsl.2009.01.024 [46] Nooner, S.L., Sasagawa, G.S., Blackman, D.K., et al., 2003. Structure of Oceanic Core Complexes: Constraints from Seafloor Gravity Measurements Made at the Atlantis Massif. Geophysical Research Letter, 30(8): 1446. doi: 10.1029/2003GL017126 [47] Ohara, Y., Yoshida, T., Kato, Y., et al., 2001. Giant Megamullion in the Parece Vela Backarc Basin. Marine Geophysical Research, 22(1): 47-61. doi: 10.1023/A:1004818225642 [48] Ohara, Y., Okino, K., Snow, J.E., 2011. Tectonics of Unusual Crustal Accretion in the Parece Vela Basin. In: Ogawa, Y., Anma, R., Dilek, Y., eds., Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, Modern Approaches in Solid Earth Sciences. Springer, Netherlands, 8: 149-168. [49] Okino, K., Matsuda, K., Christie, D.M., et al., 2004. Development of Oceanic Detachment and Asymmetric Spreading at the Australian-Antarctic Discordance. Geochem. Geophys. Geosyst. , 5(12): Q12012. doi: 10.1029/2004GC000793 [50] Ranero, C.R., Reston, T.J., 1999. Detachment Faulting at Ocean Core Complexes. Geology, 27(11): 983-986. doi:10.1130/0091-7613(1999)027<0983:DFAOCC>2.3.CO;2 [51] Ray, D., Misra, S., Banejee, R., et al., 2011. Geochemical Implications of Gabbro from the Slow-Spreading Northern Central Indian Ocean Ridge, Indian Ocean. Geological Magazine, 148(3): 404-422. doi: 10.1017/S001675681000083X [52] Reston, T.J., Weinrebe, W., Grevemeyer, I., et al., 2002. A Rifted inside Corner Massif on the Mid-Atlantic Ridge at 5°S. Earth Planet. Sci. Lett. , 200(3-4): 255-269. doi: 10.1016/S0012-821X(02)00636-2 [53] Sauter, D., Cannat, M., Mendel, V., 2008. Magnetization of 0-26.5 Ma Seafloor at the Ultraslow-Spreading Southwest Indian Ridge 61°-67°E. Geochem. Geophys. Geosyst. , 9(4): Q04002. doi: 10.1029/2007GC001764 [54] Searle, R.C., Cannat, M., Fujioka, K., et al., 2003. FUJI Dome: A Large Detachment Fault near 64°E on the Very Slow-Spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. , 4(8): 9105. doi: 10.1029/2003GC000519 [55] Shen, L., Liu, J.L., Hu, L., et al., 2011. The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance. Science in China (Ser. D), 41(4): 437-451 (in Chinese). http://www.springerlink.com/content/x652765040670774/ [56] Sichel, S.E., Esperança, S., Motoki, A., et al., 2008. Geophysical and Geochemical Evidence for Cold Upper Mantle beneath the Equatorial Atlantic Ocean. Revista Brasileira de Geofísica, 26(1): 69-86. doi. org/10.1590/S0102-261X2008000100006 doi: 10.1590/S0102-261X2008000100006 [57] Smith, D.K., Escartin, J., Cannat, M., et al., 2003. Spatial and Temporal Distribution of Seismicity along the Northernmid-Atlantic Ridge (15°-35°N). J. Geophys. Res. , 108(B3): 2167. doi: 10.1029/2002JB001964 [58] Steinfeld, R., Rhein, M., Brandt, P., et al., 2009. Oceanography, Geology and Geophysics of the South Equatorial Atlantic: Cruise No. 62, June 24-December 30, 2004, Ponta Delgada (Portugal)- Walvis Bay (Namibia). Universität Hamburg, Leitstelle Meteor/Merian. [59] Tucholke, B.E., Behn, M.D., Buck, W.R., et al., 2008. Role of Melt Supply in Oceanic Detachment Faulting and Formation of Megamullions. Geology, 36(6): 455-458. doi: 10.1130/G24639A.1 [60] Tucholke, B.E., Lin, J., Kleinrock, M.C., 1998. Megamullions and Mullion Structure Defining Oceanic Metamorphic Core Complexes on the Mid-Atlantic Ridge. J. Geophys. Res. , 103(B5): 9857-9866. doi: 10.1029/98JB00167 [61] Yao, L.J., Yan, D.P., Hu, L., 2007. Structure Style and Temperature-Pressure Estimation of the Detachment Fault Zone around Fangshan Dome, Western Hills of Beijing. Earth Science— Journal of China University of Geosciences, 32(3): 357-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703007.htm [62] Zheng, Y.D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geological Sinica, 67(4): 301-309(in Chinese with English abstract). http://www.cqvip.com/QK/86253X/19942/1005047324.html [63] 李三忠, 吕海青, 侯方辉, 等, 2006. 海洋核杂岩. 海洋地质与第四纪地质, 26 (1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200601012.htm [64] 李武显, 谢国刚, 1996. 变质核杂岩概述. 江西地质, 10(2): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ602.008.htm [65] 刘德民, 李德威, 2003. 喜马拉雅造山带中段定结地区拆离断层. 大地构造与成矿学, 27(1): 37-42. doi: 10.3969/j.issn.1001-1552.2003.01.005 [66] 楼法生, 舒良树, 王德滋, 2005. 变质核杂岩研究进展. 高校地质学报, 11(1): 67-76. doi: 10.3969/j.issn.1006-7493.2005.01.005 [67] 申亮, 刘俊来, 胡玲, 等, 2011. 辽东半岛大营子拆离断层系及其区域构造意义. 中国科学(D辑), 41(4): 437-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201104003.htm [68] 姚丽景, 颜丹平, 胡玲, 2007. 房山变质核杂岩基底拆离断层韧性剪切变形构造及环境分析. 地球科学——中国地质大学学报, 32(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703007.htm [69] 郑亚东, 张青, 1993. 内蒙古亚干变质核杂岩与伸展拆离断层. 地质学报, 67(4): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199304001.htm