• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑中泥盆世A型花岗岩的确定及其构造意义

    刘彬 马昌前 郭盼 张金阳 熊富浩 黄坚 蒋红安

    刘彬, 马昌前, 郭盼, 张金阳, 熊富浩, 黄坚, 蒋红安, 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
    引用本文: 刘彬, 马昌前, 郭盼, 张金阳, 熊富浩, 黄坚, 蒋红安, 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
    LIU Bin, MA Chang-qian, GUO Pan, ZHANG Jin-yang, XIONG Fu-hao, HUANG Jian, JIANG Hong-an, 2013. Discovery of the Middle Devonian A-type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
    Citation: LIU Bin, MA Chang-qian, GUO Pan, ZHANG Jin-yang, XIONG Fu-hao, HUANG Jian, JIANG Hong-an, 2013. Discovery of the Middle Devonian A-type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962. doi: 10.3799/dqkx.2013.093

    东昆仑中泥盆世A型花岗岩的确定及其构造意义

    doi: 10.3799/dqkx.2013.093
    基金项目: 

    国家自然科学基金项目 41272079

    中国地质调查局计划项目 1212011121270

    中国地质调查局计划项目 1212010918002

    教育部和国家外国专家局高等学校学科创新引智计划 B07039

    详细信息
      作者简介:

      刘彬(1987-), 男, 博士研究生, 矿物学、岩石学、矿床学专业.E-mail: liubincug@126.com

      通讯作者:

      马昌前, E-mail: cqma@cug.edu.cn

    • 中图分类号: P581

    Discovery of the Middle Devonian A-type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications

    • 摘要: 东昆仑中泥盆世冰沟正长花岗岩具有高硅(SiO2含量为71.85%~72.77%)和高碱(K2O+Na2O值为8.39~8.58)、相对富铝(A/CNK为0.93~1.03)、高FeOt/MgO(6.24~7.86)和104 Ga/Al值(3.04~3.60)、富集轻稀土、明显的Eu负异常、相对原始地幔明显富集Zr、Ga、Y和Hf等高场强元素并强烈亏损Ba、Sr、P和Ti元素的特征, 这些特征与A型花岗岩类的地球化学特征一致.采用锆石LA-ICP-MS U-Pb法获得206Pb/238U值加权平均年龄为391±3 Ma(MSWD值为2.36), 表明该岩体为中泥盆世岩浆活动的产物.综合全岩Sr-Nd同位素、地球化学及实验岩石学等资料, 可以判断该岩石为造山后伸展阶段长英质地壳物质(变杂砂岩)在低压高温氧化条件下发生部分熔融的产物.冰沟正长花岗岩是目前东昆仑地区报道的时代最晚的古生代A型花岗岩, 它的出现可能标志着中泥盆世时期东昆仑始特提斯构造演化的彻底终结和古特提斯构造演化的崭新开始.

       

    • 图  1  东昆仑造山带东段大地构造位置(a)和侵入岩地质分布(b)

      Fig.  1.  The tectonic location (a) and simplified geological map (b) of east part of the eastern Kunlun orogen

      图  2  冰沟正长花岗岩岩体地质简图

      1.奥陶纪花岗岩;2.中泥盆世正长花岗岩;3.中三叠世花岗岩;4.古元古代地层;5.中元古代地层;6.第四纪;7.采样位置;8.样品号

      Fig.  2.  Simplified geological map of the Binggou syeno-granitic pluton

      图  3  冰沟正长花岗岩显微镜下照片

      a.条纹结构;b.蠕虫结构;Bt.黑云母;Kfs.碱性长石;Pl.斜长石;Qtz.石英

      Fig.  3.  Photomicrographs of the typical textures of the Binggou syeno-granite

      图  4  冰沟正长花岗岩样品(09NM14-1)典型锆石阴极发光图像(a)和U-Pb谐和图(b)

      Fig.  4.  CL images of representative zircons from the Binggou syeno-granite (a) and the U-Pb zircon concordia diagram (b)

      图  5  冰沟正长花岗岩FeOt/(FeOt+MgO)-SiO2(a),(Na2O+K2O-CaO)-SiO2(b),FeOt/(FeOt+MgO)-Al2O3(c)和FeOt/(FeOt+MgO)-Al2O3/(K2O/Na2O)(d)图解(其中图a和b底图据Frost et al., 2001,图c和图d底图据Dall'Agnol and de Oliveira, 2007)

      Fig.  5.  FeOt/(FeOt+MgO) vs.SiO2 (a), (Na2O+K2O-CaO) vs.SiO2 (b), FeOt/(FeOt+MgO) vs.Al2O3 (c) and FeOt/(FeOt+MgO) vs.Al2O3/(K2O/Na2O) (d)plots for the Binggou syeno-granite

      图  6  冰沟正长花岗岩稀土元素球粒陨石标准化分布型式(a)(球粒陨石标准化值据Talyor and Mclennan, 1985)和微量元素原始地幔标准化蛛网图(b)(原始地幔标准化值据Sun and McDonough, 1989)

      Fig.  6.  Chondrite normalized REE distribution patterns (a) and primitive mantle normalized trace element spider diagrams (b) of the Binggou syeno-granite

      图  7  FeOt/MgO、(K2O+Na2O)/CaO和Zr+Nb+Ce+Y图解(底图据Whalen et al., 1987)

      A.A型花岗岩;FG.分异长英质花岗岩;OGT.未分异的M-I-S型花岗

      Fig.  7.  FeOt/MgO、(K2O+Na2O)/CaO和Zr+Nb+Ce+Y diagrams for the Binggou syeno-granite

      图  8  A/MF-C/MF图解和nK2O/nNa2O-nCaO/(nMgO+nFeOt)图解(底图分别据Altherr et al., 2000; Kaygusuz et al., 2008)

      Fig.  8.  A/MF vs.C/MF and nK2O/nNa2O vs.nCaO/(nMgO+nFeOt) diagrams for the Binggou syeno-granite

      A.Al2O3; M.MgO; F.FeOt; C.CaO

      图  9  冰沟正长花岗岩Ce/Nb-Y/Nb图解和Nb-Y-3Ga三角图解(底图据Eby,1992)

      Fig.  9.  Ce/Nb vs.Y/Nb and Nb-Y-3Ga diagrams for the Binggou syeno-granite

      表  1  冰沟粗粒正长花岗岩锆石LA-ICP-MS U-Pb定年结果

      Table  1.   Zircon LA-ICP-MS U-Pb data for Binggou alkali-feldspar granites

      点号 元素含量(×10-6) 元素比值 同位素比值 同位素年龄(Ma)
      232Th 238U Th/U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      1 379 507 0.75 0.073 15 0.001 44 0.597 29 0.013 18 0.059 22 0.000 99 1 018 41 476 8 371 6
      2 68 102 0.66 0.056 75 0.002 47 0.480 53 0.020 57 0.061 42 0.001 14 482 99 398 14 384 7
      3 720 923 0.78 0.057 17 0.000 91 0.493 84 0.009 18 0.062 65 0.000 94 498 36 408 6 392 6
      4 398 350 1.14 0.059 34 0.001 66 0.519 75 0.014 86 0.063 53 0.001 06 580 62 425 10 397 6
      5 773 1 110 0.70 0.054 93 0.001 21 0.475 63 0.011 45 0.062 80 0.001 05 409 50 395 8 393 6
      6 65 104 0.62 0.054 71 0.001 81 0.469 96 0.015 79 0.062 30 0.001 06 400 76 391 11 390 6
      7 66 73 0.91 0.055 23 0.003 20 0.473 33 0.026 79 0.062 16 0.001 32 422 133 393 18 389 8
      8 80 102 0.78 0.059 09 0.002 05 0.512 99 0.017 79 0.062 97 0.001 07 570 77 420 12 394 6
      9 65 70 0.92 0.055 34 0.003 06 0.473 55 0.025 64 0.062 05 0.001 28 426 127 394 18 388 8
      10 400 580 0.69 0.060 98 0.001 45 0.525 49 0.013 16 0.062 50 0.001 02 639 52 429 9 391 6
      11 309 457 0.68 0.059 08 0.001 08 0.507 23 0.010 43 0.062 27 0.000 96 570 41 417 7 389 6
      12 276 302 0.91 0.048 64 0.005 88 0.418 56 0.050 03 0.062 41 0.001 10 131 256 355 36 390 7
      13 304 452 0.67 0.059 40 0.001 38 0.535 89 0.013 03 0.065 49 0.001 02 582 52 436 9 409 6
      14 281 362 0.78 0.055 01 0.001 19 0.467 25 0.010 90 0.061 61 0.000 97 413 49 389 8 385 6
      15 74 143 0.52 0.054 04 0.001 66 0.462 11 0.014 44 0.062 06 0.001 04 373 71 386 10 388 6
      16 430 707 0.61 0.061 84 0.001 35 0.553 05 0.012 83 0.064 90 0.001 01 669 48 447 8 405 6
      17 127 140 0.91 0.054 82 0.002 49 0.474 46 0.021 38 0.062 78 0.001 27 405 104 394 15 393 8
      18 139 183 0.76 0.052 98 0.001 53 0.463 21 0.013 74 0.063 47 0.001 06 328 67 386 10 397 6
      下载: 导出CSV

      表  2  冰沟正长花岗岩主量(%)、微量(10-6)和Sr-Nd同位素测定结果

      Table  2.   Major and trace elements and Sr-Nd isotopic compositions of selected samples from the Binggou the Binggou syeno-granite

      样品号 09NM14-1 10NM17-1 10NM18-1 10NM21-11 10NM24-4 10NM25-2
      SiO2 71.85 72.37 71.77 72.12 72.77 72.20
      TiO2 0.46 0.33 0.39 0.41 0.34 0.35
      Al2O3 13.08 13.09 13.21 12.77 12.73 13.22
      Fe2O3 0.38 0.55 0.63 1.05 0.53 0.38
      FeO 3.00 2.10 2.42 1.80 2.07 2.35
      FeOt 3.34 2.59 2.99 2.74 2.55 2.69
      MnO 0.06 0.04 0.04 0.04 0.05 0.04
      MgO 0.44 0.33 0.38 0.44 0.39 0.41
      CaO 1.29 1.04 1.34 1.78 1.30 1.35
      Na2O 3.14 2.69 3.16 2.54 3.06 3.20
      K2O 5.32 5.87 5.26 5.85 5.45 5.22
      P2O5 0.09 0.06 0.07 0.07 0.06 0.08
      CO2 0.10 0.32 0.34 0.04 0.20 0.26
      H2O+ 0.59 1.05 0.83 0.91 0.89 0.78
      LOi 0.39 1.11 0.83 0.66 0.77 0.77
      Total 100.19 100.95 100.67 100.48 100.61 100.61
      A/CNK 0.99 1.03 0.99 0.93 0.96 0.99
      A/NK 1.20 1.21 1.21 1.21 1.16 1.21
      FeOt/MgO 7.60 7.86 7.86 6.24 6.53 6.57
      FeOt/(FeOt+MgO) 0.88 0.89 0.89 0.86 0.87 0.87
      Tzr(℃) 874 862 865 862 851 851
      Rb 365 329 335 342 240 376
      Sr 80 53 69 134 78 73
      Ba 572 506 483 437 492 468
      U 4.56 4.26 5.08 5.72 4.63 5.13
      Th 26.33 29.41 30.23 32.87 23.31 25.53
      Nb 25.2 21.0 24.1 21.6 17.6 27.4
      Ta 2.10 2.39 2.06 1.55 1.55 2.64
      Zr 447 356 406 453 362 353
      Hf 11.73 9.33 10.32 11.85 9.44 9.84
      Ga 21.1 23.0 23.7 20.7 22.2 25.2
      Y 79.4 69.0 67.9 69.8 57.3 94.1
      Zn 77.2 44.3 66.2 24.8 39.4 80.4
      La 60.4 81.5 85.9 88.4 60.0 78.5
      Ce 120.0 163.6 170.0 172.5 115.9 149.3
      Pr 14.68 19.54 20.29 20.56 13.31 17.02
      Nd 58.5 75.0 76.7 77.5 50.4 62.9
      Sm 12.85 13.94 14.28 14.06 9.70 13.09
      Eu 0.95 0.90 0.90 0.84 0.90 0.87
      Gd 11.74 12.97 13.37 12.93 9.17 13.03
      Tb 1.98 1.98 2.07 1.95 1.44 2.18
      Dy 12.14 11.78 11.95 10.84 8.64 14.08
      Ho 2.41 2.22 2.29 2.24 1.74 2.87
      Er 7.03 6.20 6.02 6.00 4.89 8.03
      Tm 1.03 0.91 0.91 0.87 0.71 1.25
      Yb 6.69 5.91 5.41 5.55 4.65 8.19
      Lu 0.99 0.87 0.77 0.81 0.74 1.26
      ΣREE 311.42 397.32 410.87 415.09 282.24 372.53
      LREE/HREE 6.08 8.28 8.60 9.08 7.83 6.32
      LaN/YbN 6.11 9.32 10.72 10.75 8.73 6.48
      δEu 0.23 0.20 0.20 0.19 0.29 0.20
      104 Ga/Al 3.04 3.32 3.39 3.06 3.30 3.60
      87Rb/86Sr 13.308 7 14.181 6 7.442 6 8.991 0 15.036 8
      87Sr/86Sr 0.787 700 0.729 221 0.766 885 0.772 067 0.798 207
      ±2σ 7 6 30 11 32
      (87Sr/86Sr)i 0.712 0.648 0.724 0.721 0.713
      147Sm/144Nd 0.132 3 0.112 6 0.109 7 0.116 3 0.125 8
      143Nd/144Nd 0.512 220 0.512 208 0.512 202 0.512 193 0.512 216
      ±2σ 5 3 1 2 2
      εNd(t) -4.87 -4.09 -4.06 -4.58 -4.61
      T2DM(Ga) 1.54 1.48 1.48 1.52 1.52
        注:表中氧化物含量的单位为%;稀土和微量元素单位为×10-6;全铁FeOt=0.899 81×Fe2O3+FeO;空白处表示未做测试.
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
      [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
      [4] Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Source? A review. Lithos, 78(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.042
      [5] Bonin, B., 2007. A-type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007
      [6] Chapell, B.W., White, A.J.R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
      [7] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2006. SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications. Acta Petrologica et Mineralogica, 25(1): 25-32(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW200601002.htm
      [8] Chen, N.S., He, L., Sun, M., et al., 2002. Precise Timing of the Early Paleozoic Metamorphism and Thrust Deformation in the Eastern Kunlun Orogen. Chinese Science Bulletin, 47(8): 628-631(in Chinese). doi: 10.1360/csb2002-47-8-628
      [9] Chen, N.S., Sun, M., Zhang, K.X., et al., 2000. 40Ar-39Ar and U-Pb Ages of Metadiorite from the East Kunlun Orogenic Belt: Evidence for Early Paleozoic Magmatic Zone and Excess Argon in Amphibole Minerals. Chinese Science Bulletin, 45(21): 2337-2342(in Chinese). doi: 10.1360/csb2000-45-21-2337
      [10] Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163-166. doi:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
      [11] Cui, M.H., Meng, F.C., Wu, X.K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379(in Chinese with English abstract). http://www.oalib.com/paper/1476111
      [12] Dall'Agnol, R., de Oliveira, D.C., 2007. Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A-Type Granites. Lithos, 93(3-4): 215-233. doi: 10.1016/j.lithos.2006.03.065
      [13] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [14] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
      [15] Frost, C.D., Frost, B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. doi: 10.1093/petrology/egq070
      [16] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. doi: 10.1038/nature03162
      [17] Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201007007.htm
      [18] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X
      [19] Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635-638. doi: 10.1130/G23505A.1
      [20] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X
      [21] Hong, D.W., Wang, S.G., Han, B.F., et al., 1995. The Tectonic Classification and Identification Characteristics of Alkali Granites. Science in China(Series B), 25(4): 418-426(in Chinese).
      [22] Jia, X.H., Wang, Q., Tang, G.J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese). http://www.researchgate.net/publication/285854313_A-type_granites_Research_progress_and_implications
      [23] Kaygusuz, A., Siebel, W., Sen, C., et al., 2008. Petrochemistry and Petrology of I-Type Granitoids in an Arc Setting: The Composite Torul Pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4): 739-764. doi: 10.1007/s00531-007-0188-9
      [24] King, P.L., White, A., Chappell, B.W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371
      [25] Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606039.htm
      [26] Li, J.L., 2009. Global Tectonic Facies: A Preclusive Opinion. Geological Bulletin of China, 28(10): 1375-1381(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200910003.htm
      [27] Li, J.L., Sun, S., Hao, J., et al., 1999. Time Limit of Collision Event of Collision Orogens. Acta Petrologica Sinica, 15(2): 315-320 (in Chinese with English abstract).
      [28] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-feldspar Granite. Acta Geologica Sinica (English Edition), 87(2): 333-345. doi: 10.1111/1755-6724.12054
      [29] Li, S., Wang, T., Tong, Y., et al., 2011. Zircon U-Pb Age, Origin and Its Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China. Acta Petrologica Sinica, 27(10): 3055-3070(in Chinese with English abstract). http://www.researchgate.net/publication/295654047_Zircon_U-Pb_age_origin_and_its_tectonic_significances_of_Huitongshan_Devonian_K-feldspar_granites_from_Beishan_orogen_NW_China
      [30] Li, X.W., Mo, X.X., Zhao, Z.D., et al., 2010. A Discussion on How to Discriminate A-Type Granite. Geological Bulletin of China, 29(2-3): 278-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2010Z1013.htm
      [31] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807(in Chinese with English abstract).
      [32] Liu, C.D., 2008. Granitoid Magma Mixing in Eastern Part of the East Kunlun Orogenic Belt. Geological Publishing House, Beijing (in Chinese).
      [33] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      [34] Loiselle, M.C., Wones, D.R., 1979. Characteristics and Origin of Anorogenic Granites. Geological of Society of America, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683
      [35] Lu, L., Wu, Z.H., Hu, D.G., et al., 2010. Zircon U-Pb Ages for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains. Acta Petrologica Sinica, 26(4): 1150-1158(in Chinese with English abstract). http://www.oalib.com/paper/1474749
      [36] Lu, S.N., 2002. Precambrian Geology in Northern Tibetan Plateau. Geological Publishing House, Beijing (in Chinese with English abstract).
      [37] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. GSA Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [38] Meng, F.C., Zhang, J.X., Cui, M.H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance. Gondwana Research, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007
      [39] Miller, C.F., Mcdowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. doi:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
      [40] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GXDX200703005.htm
      [41] Pan, Y.S., Zhou, W.M., Xu, R.H., et al., 1996. Geological Characteristics and Evolution of the Kunlun Mountains Region during the Early Paleozoic. Science in China(Series D), 26(4): 302-307(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199604000.htm
      [42] Patiño Douce, A.E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. doi:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
      [43] Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200905008.htm
      [44] Sun, D.Y., Wu, F.Y., Li, H.M., et al., 2000. Emplacement Age of the Postorogenic A-Type Granites in Northwestern Lesser Xing'an Ranges, and Its Relationship to the Eastward Extension of Suolunshan-Hegenshan-Zhalaite Collisional Suture Zone. Chinese Science Bulletin, 45(20): 2217-2222(in Chinese). doi: 10.1360/csb2000-45-20-2217
      [45] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [46] Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      [47] Wang, G.C., Wei, Q.R., Jia, C.X., et al., 2007. Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929-937 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252288744.html
      [48] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica Sinica, 19(4): 297-306(in Chinese with English abstract).
      [49] Watson, E.B., 1979. Zircon Saturation in Felsic Liquids: Experimental Results and Applications to Trace Element Geochemistry. Contributions to Mineralogy and Petrology, 70(4): 407-419. doi: 10.1007/BF00371047
      [50] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
      [51] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
      [52] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm
      [53] Wu, S.P., Wang, M.Y., Qi, K.J., 2007. Present Situation of Researches on A-Type Granites: A Review. Acta Petrologica et Mineralogica, 26(1): 57-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200701008.htm
      [54] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Early Palaeozoic Terrence Framework and the Formation of the High Pressure(HP) and Ultra-High Pressure(UHP) Metamorphic Belts at the Central Orogenic Belt(COB). Acta Geologica Sinica, 80(12): 1793-1806(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200612001.htm
      [55] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2007. Orogenic Palteaux: Terrane Aamalgamation, Collision and Uplift in the Qinghai-Tibet Plateau. Geological Publishing House, Beijing (in Chinese with English abstract).
      [56] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. doi: 10.1016/0040-1951(95)00199-9
      [57] Yang, J.S., Xu, Z.Q., Ma, C.Q., et al., 2010. Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgdizhi201001001
      [58] Yuan, Z.X., 2001. A Discussion on the Naming of A-Type Granite. Acta Petrologica et Mineralogica, 20(3): 293-296(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103010.htm
      [59] Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003. Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam: Zircon U-Pb SHRIMP Age Evidence. Geological Bulletin of China, 22(6): 397-404 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252293404.html
      [60] Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance. Geological Bulletin of China, 29(1): 79-85(in Chinese with English abstract). http://www.cqvip.com/qk/95894A/201001/34053570.html
      [61] Zhang, Y.L., Hu, D.G., Shi, Y.R., et al., 2010. SHRIMP Zircon U-Pb Ages and Tectonic Significance of Maoniushan Formation Volcanic Rocks in East Kunlun Orogenic Belt, China. Geological Bulletin of China, 29(11): 1614-1618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201011004.htm
      [62] Zhao, Z.M., Ma, H.D., Wang, B.Z., et al., 2008. The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area. Geological Review, 54(1): 47-56(in Chinese with English abstract). http://www.researchgate.net/publication/304748830_The_evidence_of_intrusive_rocks_about_collision-orogeny_during_Early_Devonian_in_Eastern_Kunlun_area
      [63] Zhou, Z.H., Lv, L.S., Yang, Y.J., et al., 2010. Petrogenesis of the Early Cretaceous A-Type Granite in the Huanggang Sn-Fe Deposit, Inner Mongolia: Constraints from Zircon U-Pb Dating and Geochemistry. Acta Petrologica Sinica, 26(12): 3521-3537(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201012007.htm
      [64] 谌宏伟, 罗照华, 莫宣学, 等, 2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义. 岩石矿物学杂志, 25(1): 25-32. doi: 10.3969/j.issn.1000-6524.2006.01.003
      [65] 陈能松, 何蕾, 孙敏, 等, 2002. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定. 科学通报, 47(8): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016
      [66] 陈能松, 孙敏, 张克信, 等, 2000. 东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄: 角闪石过剩Ar和东昆仑早古生代岩浆岩带证据. 科学通报, 45(21): 2337-2342. doi: 10.3321/j.issn:0023-074X.2000.21.018
      [67] 崔美慧, 孟繁聪, 吴祥珂, 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm
      [68] 高晓峰, 校培喜, 谢从瑞, 等, 2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      [69] 洪大卫, 王式洸, 韩宝福, 等, 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm
      [70] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017
      [71] 李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      [72] 李继亮, 孙枢, 郝杰, 等, 1999. 碰撞造山带的碰撞事件时限的确定. 岩石学报, 15(2): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.019.htm
      [73] 李继亮, 2009. 全球大地构造相刍议. 地质通报, 28(10): 1375-1381. doi: 10.3969/j.issn.1671-2552.2009.10.002
      [74] 李舢, 王涛, 童英, 等, 2011. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义. 岩石学报, 27(10): 3055-3070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110022.htm
      [75] 李小伟, 莫宣学, 赵志丹, 等, 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(2-3): 278-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm
      [76] 刘彬, 马昌前, 张金阳, 等, 2012, 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      [77] 刘成东, 2008. 东昆仑造山带东段花岗岩浆混合作用. 北京: 地质出版社.
      [78] 陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义. 岩石学报, 26(4): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
      [79] 陆松年, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社.
      [80] 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      [81] 潘裕生, 周伟明, 许荣华, 等, 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑), 26(4): 302-307. doi: 10.3321/j.issn:1006-9267.1996.04.003
      [82] 任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm
      [83] 孙德有, 吴福元, 李惠民, 等, 2000. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系. 科学通报, 45(20): 2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019
      [84] 王国灿, 魏启荣, 贾春兴, 等, 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003
      [85] 王强, 赵振华, 熊小林, 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002
      [86] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报. 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [87] 吴锁平, 王梅英, 戚开静, 2007. A型花岗岩研究现状及其述评. 岩石矿物学杂志, 26(1): 57-66. doi: 10.3969/j.issn.1000-6524.2007.01.009
      [88] 许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
      [89] 许志琴, 杨经绥, 李海兵, 等, 2007. 造山的高原——青藏高原地体拼合、碰撞造山及隆升机制. 北京: 地质出版社.
      [90] 杨经绥, 许志琴, 马昌前, 等, 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm
      [91] 袁忠信, 2001. 关于A型花岗岩命名问题的讨论. 岩石矿物学杂志, 20(3): 293-296. doi: 10.3969/j.issn.1000-6524.2001.03.011
      [92] 张建新, 孟繁聪, 万渝生, 等, 2003. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404. doi: 10.3969/j.issn.1671-2552.2003.06.004
      [93] 张亚峰, 裴先治, 丁仨平, 等, 2010. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 79-85. doi: 10.3969/j.issn.1671-2552.2010.01.010
      [94] 张耀玲, 胡道功, 石玉若, 等, 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义. 地质通报, 29(11): 1614-1618. doi: 10.3969/j.issn.1671-2552.2010.11.003
      [95] 赵振明, 马华东, 王秉璋, 等, 2008. 东昆仑早泥盆世碰撞造山的侵入岩证据. 地质论评, 54(1): 47-56. doi: 10.3321/j.issn:0371-5736.2008.01.006
      [96] 周振华, 吕林素, 杨永军, 等, 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约. 岩石学报, 26(12): 3521-3537. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012007.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3434
    • HTML全文浏览量:  153
    • PDF下载量:  338
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-08-14
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回