• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海神狐海域有孔虫与高饱和度水合物的储存关系

    陈芳 苏新 陆红锋 周洋 庄畅

    陈芳, 苏新, 陆红锋, 周洋, 庄畅, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
    引用本文: 陈芳, 苏新, 陆红锋, 周洋, 庄畅, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
    CHEN Fang, SU Xin, LU Hong-feng, ZHOU Yang, ZHUANG Chang, 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
    Citation: CHEN Fang, SU Xin, LU Hong-feng, ZHOU Yang, ZHUANG Chang, 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915. doi: 10.3799/dqkx.2013.089

    南海神狐海域有孔虫与高饱和度水合物的储存关系

    doi: 10.3799/dqkx.2013.089
    基金项目: 

    国家重点基础发展研究规划项目 2009CB219502

    国土资源部公益性行业科研基金项目课题 2008110140202

    国家专项项目课题 GZH2011003050602

    详细信息
      作者简介:

      陈芳(1966-), 女, 教授级高级工程师, 主要从事微体古生物学和水合物研究.E-mail: Zhchenfang66@21cn.com

    • 中图分类号: P736

    Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea

    • 摘要: 通过对神狐海域沉积物组分与水合物成藏关系的研究, 得到SH7B孔含水合物层(155~177 m)有孔虫丰度以及有孔虫壳体微结构与水合物饱和度的关系.结果表明, 有孔虫丰度与水合物饱和度有良好的对应关系, 有孔虫丰度高, 水合物饱和度也高; 反之亦然.有孔虫丰度与水合物饱和度二者的相关系数为0.72, 说明有孔虫与水合物的分布和富集有关.扫描电镜研究表明, 有孔虫成岩作用不明显, 有孔虫为有效孔隙, 有孔虫独特的壳体结构增加了沉积物的孔隙空间, 有利于水合物的储存和富集.大部分有孔虫壳体大小相当于砂粒级, 它的存在一方面增加沉积物粗组分砂的含量, 另一方面增加沉积物的孔隙度.沉积物中生物组分——有孔虫, 是南海神狐海域水合物富集的重要因素之一.

       

    • 图  1  南海北部神狐水合物钻探区构造位置(a)和钻孔位置(b)(据匡增桂和郭依群,2011修改)

      Fig.  1.  Geography and physiognomy of the gas hydrate sampling (a) and drilling locations (b) in Shenhu area, the northern South China Sea

      图  2  SH7B孔含水合物层沉积物组分与水合物饱和度的关系(符号▲表示扫描电镜观察沉积物结构层位)

      Fig.  2.  The relationship between the biogenic components of sediments and the saturations of gas hydrates of core SH7B

      图  3  SH7B孔含水合物层有孔虫丰度、碳酸钙含量与水合物饱和度相关性分析

      Fig.  3.  Plots of hydrate saturation vs. foraminifera abundance (a) and hydrate saturation vs. content of CaCO3 (b)

      图  4  水合物饱和度高的样品1(a)与水合物饱和度低的样品2(b)中的有孔虫数量及分布(扫描电镜照片)

      Fig.  4.  Foraminifera abundance in high hydrate saturation sample (a) and low hydrate saturation sample (b), showing a different abundance (SEM images)

      图  5  有孔虫含量不同的含水合物样品在水中的分解现象

      a.岩心沉积物样品1(有孔虫丰度112个/克);b.岩心沉积物样品1在水中未见明显水合物分解气体柱,说明水合物饱和度低;c.岩心沉积物样品2(有孔虫丰度525个/克),有孔虫颗粒肉眼可见;d.岩心沉积物样品2在水中剧烈分解,形成明显的气体柱,说明水合物饱和度高

      Fig.  5.  Gas hydrate dissociation from sediments with different foraminifera contents

      图  6  SH7B孔含水合物层16 835~16 840 cm有孔虫显微结构(有孔虫大部分房室未被充填)

      Fig.  6.  Foraminifera microstructure at the interval between 16 835-16 840 cm in core SH7B

      图  7  SH7B孔含水合物层15 924~15 929 cm有孔虫房室充填物(a)及其成分分析谱图(b)

      Fig.  7.  Foraminifera microstructure at the interval between 15 924-15 929 cm in core SH7B, the rooms were filled (a) and the energy dispersive X-ray spectrometry of the fillings (b)

      图  8  SH7B孔含水合物层沉积物主要颗粒组成和孔隙类型(原位薄片观察)

      Fig.  8.  SEM image of gas hydrate-bearing sediments in core SH7B

      图  9  SH7B孔15 924~15 929 cm层段水合物(有孔虫房室内白色物)产状示意图

      Fig.  9.  Gas hydrate occurrence at the interval between 15 924-15 929 cm in the sediments of core SH7B

      表  1  SH7B孔含水合物层样品有孔虫丰度与水合物饱和度的相关信息(扫描电镜)

      Table  1.   The relationship between gas hydrate saturation and foraminifera abundance in core SH7B

      样品号 样品深度(cm) 有孔虫丰度(个/单位面积) 水合物饱和度(%)
      1 15 924~15 929 26 33
      2 16 835~16 840 8 4
      3 17 352~17 357 17 13
      下载: 导出CSV
    • [1] Bahk, J.J., Kim, D.H., Chun, J.H., et al., 2011. Gas Hydrate Occurrences and Their Relation to Hosting Sediment Properties: Results from UBGH2, East Sea. Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, United Kingdom.
      [2] Bünz, S., Mienert, J., Berndt, C., 2003. Geological Controls on the Storegga Gas-Hydrate System of the Mid-Norweigian Continental Margin. Earth and Planetary Science Letters, 209(3-4): 291-307. doi: 10.1016/s0012-821x(03)00097-9
      [3] Chen, F., Su, X., Zhou, Y., et al., 2009. Variations in Biogenic Components of Late Miocene-Holocene Sediments from Shenhu Area in the Northern South China Sea and Their Geological Implications. Marine Geology & Quaternary Geology, 29(2): 1-8(in Chinese with English abstract).
      [4] Chen, F., Zhou, Y., Su, X., et al., 2010. Benthic Foraminifera and Stable Isotopic Composition of Gas Hydrate-Bearing Sediments from Shenhu Area in The Northern South China Sea. Marine Geology & Quaternary Geology, 29(2): 1-8(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010MGQG...30....1C
      [5] Chen, F., Zhou, Y., Su, X., et al., 2011. Gas Hydrate Saturation and Its Relation with Grain Size of Gas Hydrate-Bearing Sediments in the Shenhu Area of Northern South China Sea. Marine Geology & Quaternary Geology, 31(5): 95-100(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201105017.htm
      [6] Clennell, M.B., Hovland, M., Booth, J.S., et al., 1999. Formation of Natural Gas Hydrates in Marine Sediments: 1. Conceptual Model of Gas Hydrate Growth Conditioned by Host Sediment Properties. Journal of Geophysical Research, 104(B10): 22985-223003. doi: 10.1029/1999JB900175/abstract
      [7] Collett, T.S., Ladd, J., 2000. Detection of Gas Hydrate with Down Hole Logs and Assessment of Gas Hydrate Concentrations (Saturations) and Gas Volumes on the Blake Ridge with Electrical Resistivity Log Data. Proceedings of the Ocean Drilling Program, Scientific Results, 164: 179-191. http://www.researchgate.net/publication/279539318_Detection_of_gas_hydrate_with_downhole_logs_and_assessment_of_gas_hydrate_concentrations_saturations_and_gas_volumes_on_the_Blake_Ridge_with_electrical_resistivity_log_data
      [8] Department of Marine Geology, 1989. Introduction to Paleoceanography. Tongji University Press, Shanghai(in Chinese).
      [9] Fang, D.Y., Zhao, Q.H., Cheng, X.R., et al., 2005. Diagenetic Influence on the Foraminiferal Oxygen Isotope Record. Marine Geology & Quaternary Geology, 25(2): 63-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200502013.htm
      [10] Lu, H.F., Chen, H., Chen, F., et al., 2009. Mineralogy of Sediments from Gas-hydrate Drilling Sites, Shenhu Area, South China Sea. Research of Geological South China Sea, 28-39(in Chinese with English abstract). http://www.researchgate.net/publication/284819690_Mineralogy_of_the_sediments_from_gas_hydrate_drilling_site_Shenhu_area_South_China_Sea_in_Chinese_with_English_abstract
      [11] Kraemer, L.M., Owen, R.M., Dichens, G.R., 2000. Lithology of the Upper Gas Hydrate Zone, Blake Outer Ridge, a Link between Diatoms, Porosity, and Gas Hydrate. Proceedings of the Ocean Drilling Program, Scientific Results, 164: 229-236. http://www.researchgate.net/publication/279706004_Lithology_of_the_upper_gas_hydrate_zone_Blake_Outer_Ridge_A_link_between_diatoms_porosity_and_gas_hydrate
      [12] Kuang, Z.G., Guo, Y.Q., 2011. The Sedimentary Facies and Gas Hydrate Accumulation Models since Neogene of Shenhu Area, Northern South China Sea. Earth Science—Journal of China University of Geosciences, 36(5): 914-920(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201105020.htm
      [13] Lu, H., Wright, F., Okui, T., et al., 2004. Sediment Control on Hydrate Occurrence in Natural Sediments from Experimental Results. AAPG Hedberg Research Conference, Natural Gas Hydrates: Energy Resource Potential and Associated Geological Hazards, Vancouver, Canada.
      [14] Pang, X., Chen, C.M., Peng, D.J., et al., 2008. Basic Geology of Baiyun Deep Water Area in the Northern South China Sea. China Offshore Oil and Gas(Geology), 20(4): 215-222(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200804002.htm
      [15] Paull, C.K., Matsumoto, R., Wallace, P.J., et al., 1996. Proceedings of the Ocean Drilling Program Leg164, Initial Reports. Ocean Drilling Program, College Station, Texas.
      [16] Su, X., Chen, F., Yu, X.H., et al., 2005. A Pilot Study on Miocene through Holocene Sediments from the Continental Slope of the South China Sea in Correlation with Possible Distribution of Gas Hydrates. Geoscience, 19(1): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200501000.htm
      [17] Torres, M.E., Wallmann, K., Tréhu, A.M., et al., 2004. Gas Hydrate Growth, Methane Transport, and Chloride Enrichment at Southern Summit of Hydrate Ridge, Cascadia Margin off Oregon. Earth and Planetary Science Letters, 226(1-2): 225-241. doi: 10.1016/j.epsl.2004.07.029
      [18] Tréhu, A.M., Bohrmann, G., Rack, F.R., et al., 2003. Proceedings of the Ocean Drilling Program Leg 204, Initial Reports. Ocean Drilling Program, College Station, Texas.
      [19] Tréhu, A.M., Long, P.E., Torres, M.E., et al., 2004. Three-Dimensional Distribution of Gas Hydrate beneath Southern Hydrate Ridge: Constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3-4): 845-862. doi: 10.1016/j.epsl.2004.03.035
      [20] Tréhu, A.M., Ruppel, C., Holland, M., et al., 2006. Gas Hydrates in Marine Sediments: Lessons from Scientific Ocean Drilling. Oceanography, 19(4): 124-142. doi: 10.5670/oceanog.2006.11
      [21] Zhang, G.X., Huang, Y.X., Zhu, Y.H., et al., 2002. Prospect of Gas Hydrate Resources in the South China Sea. Marine Geology & Quaternary Geology, 22(1): 75-87(in Chinese with English abstract). http://www.researchgate.net/publication/285085749_Prospect_of_gas_hydrate_resources_in_the_South_China_Sea
      [22] Zhang, H.Q., Yang, S.X., Wu, N.Y., et al., 2007. China's First Gas Hydrate Expedition Successful, "Fire in the Ice". Methane Hydrate Newsletter of the U.S., Department of Energy.
      [23] 陈芳, 苏新, 周洋, 等, 2009. 南海北部陆坡神狐海域晚中新世以来沉积物中生物组分变化特征及意义. 海洋地质与第四纪地质, 29(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200902004.htm
      [24] 陈芳, 周洋, 苏新, 等, 2010. 南海神狐海域含水合物层底栖有孔虫群落结构与同位素组成. 海洋地质与第四纪地质, 30(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201002005.htm
      [25] 陈芳, 周洋, 苏新, 等, 2011. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系. 海洋地质与第四纪地质, 31(5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105017.htm
      [26] 房殿勇, 赵泉鸿, 成鑫荣, 等, 2005. 钙质成岩作用对有孔虫氧同位素的影响. 海洋地质与第四纪地质, 25(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200502013.htm
      [27] 陆红锋, 陈弘, 陈芳, 等, 2009. 南海神狐海域天然气水合物钻孔沉积物矿物学特征. 南海地质研究, 28-39.
      [28] 匡增桂, 郭依群, 2011. 南海北部神狐海域新近系以来沉积相及水合物成藏模式. 地球科学——中国地质大学学报, 36(5): 914–920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105020.htm
      [29] 庞雄, 陈长民, 彭大钧, 等, 2008. 南海北部白云深水区之基础地质. 中国海上油气, 20(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200804002.htm
      [30] 苏新, 陈芳, 于兴河, 等, 2005. 南海陆坡中新世以来沉积物特性与气体水合物分布初探. 现代地质, 19(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200501000.htm
      [31] 同济大学海洋地质系, 1989. 古海洋学概论. 上海: 同济大学出版社.
      [32] 张光学, 黄永祥, 祝有海, 等, 2002. 南海天然气水合物的成矿远景. 海洋地质与第四纪地质, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200201015.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3269
    • HTML全文浏览量:  194
    • PDF下载量:  570
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-12-27
    • 刊出日期:  2013-09-15

    目录

      /

      返回文章
      返回