Data Processing and Result Analysis of CE-2 MRM
-
摘要: 介绍了嫦娥二号(CE-2)与嫦娥一号(CE-1)搭载的微波探测仪(microwave radiometer, MRM)的不同之处, 给出其亮度温度的算法和地面定标系数, 并得到CE-2 MRM获得的全月亮度温度分布图.分析了亮温的数据规律, 并以此为基础归一化后比较了二者之间的数据差异.最后比较了不同取值的非线性系数对CE-2 MRM亮温定标结果产生的影响.结果表明: 目前CE-2 MRM数据在3GHz、19.35GHz和37GHz频率符合地基观测结果的范围, 同CE-1 MRM结果相比在月球低纬度地区(≤50°)差异在11K以内, 差异的主要原因是CE-2定标方法的改进以及定标方程中非线性项的引入, 而7.8GHz通道的数据异常表明该通道存在系统误差.Abstract: The design difference between Chang' E -1 microwave radiometer (CE-1 MRM) and Chang' E-2 microwave radiometer (CE-2 MRM) is presented in this paper, as well as the data processing algorithm and ground calibration coefficients of CE-2 MRM. Based on the data processing results, the distribution of brightness temperature (TB) of lunar surface is mapped. We propose a normalization model of TB by analyzing the regularity of the TB distribution and compare the result TB obtained by CE-2 MRM with CE-1 MRM. The discrepancy of TB for CE-2 MRM results from different nonlinear coefficients is presented at last. It is concluded that the CE-2 3GHz, 19.35GHz and 37GHz data coincide with earth-based observation, and the discrepancy between CE-1 and CE-2 MRM is smaller than 11K. There may be a systematic error on 7.8GHz channel.
-
Key words:
- CE-2 /
- microwave radiometer /
- brightness temperature /
- result comparison /
- nonlinear coefficient /
- remote sensing
-
表 1 CE-1 MRM和CE-2 MRM的不同之处
Table 1. The differences between CE-1 MRM and CE-2 MRM
不同之处 CE-1 MRM CE-2 MRM 探测轨道高度 200km 100km 天线足印 3GHz天线足印为50km,其他3个通道为35km 3GHz天线足印为25km,其他3个通道为17.5km 3GHz定标天线安装方向 卫星正X轴方向 卫星正X轴方向偏离+Z轴15° 表 2 CE-2 MRM定标试验得到的两个支路的传输系数
Table 2. The calibration coefficients determined by prelaunch calibration test
频率(GHz) p1 p2 p3 p4 p5 p6 3 1.049629 0.110748 0 1.159119 0.02171 0.143442 7.8 1.054172 0 0.223788 1.280389 0.316347 0 19.35 0.893143 0.224638 0 1.113675 0.078187 0.041347 37 0.789749 0.094459 0.207659 1.095647 0.101588 0 表 3 CE-2 MRM定标试验得到的最终的非线性系数μ及其最终残差
Table 3. The nonlinear coefficients μ and Rms residual of TB determined by prelaunch calibration test
频率(GHz) 开关温度(K) 平均μ Rms(K) 3 299.255 0.00035 0.365 3 303.2525 0.000318 0.320 3 312.7575 0.000311 0.225 7.8 303.605 0.000178 0.095 7.8 308.495 0.000187 0.130 19.35 299.645 0.000409 0.165 19.35 304.045 0.000338 0.100 19.35 309.185 0.000326 0.195 19.35 314.5 0.000278 0.230 37 299.58 0.000359 0.400 37 304.08 0.000246 0.200 37 315.27 0.000181 0.130 表 4 归一化后CE-2 MRM和CE-1 MRM结果在月面50°N-50°S的差异ΔTB
Table 4. The statistical results of ΔTB between CE-2 MRM and CE-1 MRM in 50°N-50°S
通道 平均值(K) 标准差(K) 范围(K) 3GHz 7.1 1.0 0.8 ~ 16.6 7.8GHz -25.8 3.5 -42.6 ~ -16.6 19.35GHz -3.5 1.7 -15.2 ~ 15.4 37GHz -10.5 1.6 -23.9 ~ 0.0 表 5 使用外推法得到的μ值和目前μ取值在非线性项上的差异
Table 5. The difference between TB calculated from extrapolated μ and that from current μ
频率 目前取值 外推法298K时取值 外推法285K时取值 μ TQ(K) μ TQ(K) μ TQ(K) 3GHz 0.00035 -3.83 0.000366 -4.01 0.000607 -6.64 7.8GHz 0.000178 -2.22 0.0001825 -2.28 0.0001825 -2.28 19.35GHz 0.000409 -4.33 0.000419 -4.43 0.000639 -6.77 37GHz 0.000359 -4.02 0.000408 -4.57 0.00107 -11.92 -
[1] Chan, K.L., Tsang, K.T., Kong, B., et al., 2010. Lunar Regolith Thermal Behavior Revealed by Chang'E-1 Microwave Brightness Temperature Data. Earth and Planetary Science Letters, 295(1-2): 287-291. doi: 10.1016/j.epsl.2010.04.015 [2] Di Carlofelice, A., Tognolatti, P., 2009. A Non-Linear Circuit Model for Dynamic Evaluation of Microwave Brightness Temperature of the Moon. 39th European Microwave Conference, Rome, Italy, 978-981. [3] Feng, J.Q., Zou, Y.L., Bian, W., et al., 2010. Review on Physical Models of Lunar Brightness Temperature. Chinese Journal of Geochemistry, 29(2): 204-211. doi: 10.1007/s11631-010-0204-9 [4] Heiken, G.H., Vaniman, D.T., French, B.M., 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press, England, 610. [5] Jiang, J.S., Wang, Z.Z., Li, Y., 2008. Study on Theory and Application of CE-1 Microwave Sounding Lunar Surface. Engineering Science, 10(6): 16-22(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GCKX200806005&dbcode=CJFD&year=2008&dflag=pdfdown [6] Jin, Y.Q., Fa, W.Z., Xu, F., 2007. Modeling Simulation and Inversion for Microwave Active and Passive Remote Sensing of the Lunar Surface. Remote Sensing Technology and Application, 22(2): 129-134(in Chinese with English abstract). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=797194 [7] Koshchenko, V.N., Kuzmin, A.D., Salomonovich, A.E., 1962. Thermal Radio Emission of the Moon at a Wavelength of 10CM. In: Kopal, Z., Mikhailov, Z., eds., The Moon-IAU Symposium 14. Academic Press, London and New York, 497-500. [8] Medd, W.J., Broten, N.W., 1961. Lunar Temperature Measurements at 3200Mc/s. Planetary and Space Science, 5(4): 307-313. doi: 10.1016/0032-0633(61)90102-7 [9] Milman, A.S., Wilheit, T.T., 1985. Sea Surface Temperatures from the Scanning Multichannel Microwave Radiometer on Nimbus 7. Journal of Geophysical Research, 90(C6): 11631-11641. doi: 10.1029/JC090iC06p11631 [10] Mo, T., 1996. Prelaunch Calibration of the Advanced Microwave Sounding Unit-A for NOAA-K. IEEE Transactions on Microwave Theory and Techniques, 44(8): 1460-1469. doi: 10.1109/22.536029 [11] Morabito, D.D., Imbriale, W., Keihm, S., 2008. Observing the Moon at Microwave Frequencies Using a Large-Diameter Deep Space Network Antenna. IEEE Transactions on Antennas and Propagation, 56(3): 650-660. doi: 10.1109/TAP.2007.915471 [12] Ouyang, Z.Y., Zou, Y.L., Li, C.L., et al., 2002. Prospect of Exploration and Utilization of Some Lunar Resources. Earth Science—Journal of China University of Geosciences, 27(5): 498-503 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205003.htm [13] Piddington, J.H., Minnett, H.C., 1951. Observations of Galactic Radiation at Frequencies of 1200 and 3000Mc/s. Australian Journal of Chemistry, 4(4): 459-475. doi: 10.1071/CH9510459 [14] Ruf, C.S., Keihm, S.J., Janssen, M.A., 1995. TOPEX/Poseidon Microwave Radiometer (TMR). I. Instrument Description and Antenna Temperature Calibration. IEEE Transactions on Geoscience and Remote Sensing, 33(1): 125-137. doi: 10.1109/36.368215 [15] Salomonovich, A.E., Losovskii, B.Y., 1963. Radio-Brightness Distribution on the Lunar Disk at 0.8cm. Soviet Astronomy, 6(6): 833-839. [16] Wang, Z.Z., Li, Y., Zhang, X.H., et al., 2009. In-Orbit Calibration of and Antenna Pattern Correction to CE-1 Lunar Microwave Sounder (CELMS). Science China (Serier D), 39(8): 1029-1044 (in Chinese with English abstract). http://www.researchgate.net/publication/285468643_In-orbit_calibration_of_and_antenna_pattern_correction_to_CE-1_Lunar_microwave_sounder_CELMS_in_Chinese [17] Zelinskaya, M.R., Troitskii, V.S., Fedoseev, L.I., 1959. Lunar Radio Emissions at 1.63cm Wavelength. Soviet Astronomy, 36(4): 628-632. [18] Zhang, X.Z., Gray, A., Su, Y., et al., 2012. New Radio Observations of the Moon at L Band. Research in Astronomy and Astrophysics (RAA), 12(9): 1297-1312. doi: 10.1088/1674-4527/12/9/010 [19] 姜景山, 王振占, 李芸, 2008. 嫦娥1号卫星微波探月技术机理和应用研究. 中国工程科学, 10(6): 16-22. doi: 10.3969/j.issn.1009-1742.2008.06.003 [20] 金亚秋, 法文哲, 徐丰, 2007. 月球表面微波主被动遥感的建模模拟与反演. 遥感技术与应用, 22(2): 129-134. doi: 10.3969/j.issn.1004-0323.2007.02.002 [21] 欧阳自远, 邹永廖, 李春来, 等, 2002. 月球某些资源的开发利用前景. 地球科学——中国地质大学学报, 27(5): 498-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205003.htm [22] 王振占, 李芸, 张晓辉, 等, 2009. "嫦娥一号"卫星微波探测仪数据处理模型和月表微波亮温反演方法. 中国科学(D辑), 39(8): 1029-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200908003.htm