• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多孔介质中水气交替注入微观渗流模拟

    杨永飞 尹振 姚军 李亚军 王晨晨

    杨永飞, 尹振, 姚军, 李亚军, 王晨晨, 2013. 多孔介质中水气交替注入微观渗流模拟. 地球科学, 38(4): 853-858. doi: 10.3799/dqkx.2013.083
    引用本文: 杨永飞, 尹振, 姚军, 李亚军, 王晨晨, 2013. 多孔介质中水气交替注入微观渗流模拟. 地球科学, 38(4): 853-858. doi: 10.3799/dqkx.2013.083
    YANG Yong-fei, YIN Zhen, YAO Jun, LI Ya-jun, WANG Chen-chen, 2013. Pore-Scale Simulation of Microcosmic Flow during Water-Alternating-Gas (WAG) in Porous Media. Earth Science, 38(4): 853-858. doi: 10.3799/dqkx.2013.083
    Citation: YANG Yong-fei, YIN Zhen, YAO Jun, LI Ya-jun, WANG Chen-chen, 2013. Pore-Scale Simulation of Microcosmic Flow during Water-Alternating-Gas (WAG) in Porous Media. Earth Science, 38(4): 853-858. doi: 10.3799/dqkx.2013.083

    多孔介质中水气交替注入微观渗流模拟

    doi: 10.3799/dqkx.2013.083
    基金项目: 

    国家自然科学基金 11072268

    国家自然科学基金 51234007

    教育部科学技术研究重大项目 311009

    山东省自然科学基金 ZR2011EEQ002

    中央高校基本科研业务费专项资金资助 11CX04022A

    高等学校博士学科点专项科研基金资助课题 20120133120017

    长江学者和创新团队发展计划资助 IRT1294

    详细信息
      作者简介:

      杨永飞(1982), 男, 讲师, 博士, 从事油气田开发相关科研和教学工作.E-mail: feiyongyang@163.com

      通讯作者:

      姚军, E-mail: rcogfr_upc@126.com

    • 中图分类号: P618

    Pore-Scale Simulation of Microcosmic Flow during Water-Alternating-Gas (WAG) in Porous Media

    • 摘要: 针对水气交替注入(water-alternating-gas, WAG)过程中, 油气水三相渗流的微观机理认识不足和油气水三相流体在多孔介质中分布规律认识不准确等问题, 基于三维孔隙网络模型, 应用孔隙级模拟方法, 从微观角度模拟了不同润湿性多孔介质中的WAG驱替过程.结果表明: 连通性较好的多孔介质中, 原油主要在前两轮的WAG循环中被驱替出来; 在前两轮WAG驱替之后, 流体饱和度和分布规律达到比较稳定的状态, 但在完全水湿模型中油相仍然在多孔介质中流动.得出的WAG驱替过程中各相流体饱和度的变化规律、各相流体分布规律和驱替类型, 较好地阐述和解释了多孔介质中的微观驱替机理.

       

    • 图  1  三维孔隙网络模型

      Fig.  1.  Three-dimensional pore network model

      图  2  饱和路径图的对比(%)

      Fig.  2.  Saturation paths comparison

      图  3  WAG过程中剩余油饱和度变化

      Fig.  3.  Residual oil saturations during WAG for the three models

      图  4  BC模型在第一次气驱过程中流体的分布规律(蓝色代表水,红色代表气,绿色代表油;下同)

      Fig.  4.  Occupancy statistics of BC model during the 1st gas flood

      图  5  混合润湿模型(MWL)在每次驱替之后的流体分布规律

      Fig.  5.  Occupancy statistics of MWL Model during WAG Cycle

      图  6  WAG循环中三组模型的多级驱替链(图a,b,c表示驱替链的长度及其分布规律,例如数字1、2代表驱替链的长度;图d,e,f表示驱替类型及其分布规律,例如“GO”代表气驱油)

      a.BC;b.MWL;c.DCA;d.BC;e.MWL;f.DCA

      Fig.  6.  Multiple displacement chains during WAG floods for three models

      表  1  不同模型的油水接触角数值

      Table  1.   Contact angle of pores in the three models

      模型方案 油水接触角(θow)
      基本模型(Base Case,BC) 0
      混合润湿模型A(MWL) 0, 140
      混合润湿模型B(MWS) 0, 140
      接触角分布模型(DCA) 0~30
      MWL:水湿孔隙r≤15×10-6m,cosθow=1;油湿孔隙r≥15×10-6m,cosθow=-0.77.MWS:水湿孔隙r≤15×10-6m,cosθow=-0.77;油湿孔隙r≥15×10-6m,cosθow=1.油水接触角分布模型(DCA):接触角在所有孔隙中随机分布,0.5≤cosθow≤1.目标饱和度定义为每一次驱替后驱替相的饱和度,每次驱替的目标饱和度为1,其他3个模型每次驱替的目标饱和度根据BC模型设定.
      下载: 导出CSV
    • [1] Buckley, J., Bousseau, C., Liu, Y., 1996. Wetting Alteration by Brine and Crude Oil: From Contact Angles to Cores. SPE Journal, 1(3): 341-350. doi: 10.2118/30765-PA
      [2] Christensen, J.R., Stenby, E.H., Skauge, A., 1998. Review of WAG Field Experience. SPE Reservoir Evaluation & Engineering, 4(2): 97-106. doi: 10.2118/71203-PA
      [3] Dong, M., Foraie, J., Huang, S., et al., 2005. Analysis of Immiscible Water-Alternating-Gas (WAG) Injection Using Micromodel Tests. Journal of Canadian Petroleum Technology, 44(2): 17. doi: 10.2118/05-02-01
      [4] Li, H.C., Zeng, Y., Luo, H.T., et al., 2000. A Study of Numerical Simulation of Water Aternationg Gas Injection for Condensate Gas Reservoirs. Natural Gas Industry, 20(3): 62-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200003021.htm
      [5] Mane, P.A., 2007. Angola-Water Alternating Gas-First Surface Deepwater Well Gas to Water Injection Conversion. International Petroleum Technology Conference, Dubai, U.A.E. . doi: 10.2523/11378-MS
      [6] Manrique, E., Calderon, G., Mayo, L., et al., 1998. Water-Alternating-Gas Flooding in Venezuela: Selection of Candidates Based on Screening Criteria of International Field Experiences. European Petroleum Conference, Hague, Neth, Society of Petroleum Engineers. doi: 10.2118/50645-MS
      [7] Nadeson, G., Anua, N.A.B., Singhal, A., et al., 2004. Water-Alternating-Gas (WAG) Pilot Implementation, A First EOR Development Project in Dulang Field, Offshore Peninsular Malaysia. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, Society of Petroleum Engineers. doi: 10.2118/88499-MS
      [8] Pereira, G.G., 1999. Numerical Pore-Scale Modeling of Three-Phase Fluid Flow: Comparison between Simulation and Experiment. Physical Review E, 59(4): 4229-4242. doi: 10.1103/PhysRevE.59.4229
      [9] Sohrabi, M., Tehrani, D.H., Danesh, A., et al., 2004. Visualization of Oil Recovery by Water-Alternating-Gas Injection Using High-Pressure Micromodels. SPE Journal, 9(3): 290-301. doi: 10.2118/89000-PA
      [10] Van Dijke, M.I.J., Lorentzen, M., Sohrabi, M., et al., 2010. Pore-Scale Simulation of WAG Floods in Mixed-Wet Micromodels. SPE Journal, 15(1): 238-247. doi: 10.2118/113864-PA
      [11] Van Dijke, M.I.J., Sorbie, K.S., Sohrabi, M., et al., 2004. Three-Phase Flow WAG Processes in Mixed-Wet Porous Media: Pore-Scale Network Simulations and Comparison with Water-Wet Micromodel Experiments. SPE Journal, 9(1): 57-66. doi: 10.2118/75192-MS
      [12] Van Dijke, M.I.J., Sorbie, K.S., Sohrabi, M., et al., 2006. Simulation of WAG Floods in an Oil-Wet Micromodel Using a 2-D Pore-Scale Network Model. Journal of Petroleum Science and Engineering, 52(1-4): 71-86. doi: 10.1016/j.petrol.2006.03.014
      [13] Yang, D.Y., Zhang, Q., Cui, H.W., et al., 2000. Optimization of Multivariate Production-Injection System for Water-Alternating-Gas Miscible Flooding in Pubei Oil Field. SPE/AAPG Western Regional Meeting, Long Beach, CA, United States, Society of Petroleum Engineers. doi: 10.2118/62858-MS
      [14] Yang, Y.F., Yao, J., Van Dijke, M.I.J., 2010a. Effect of Reservoir Rock Wettability on Microcosmic Distribution of Residual Oil after Gas Displacement. Acta Petrolei Sinica, 31(3): 467-470 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201003022.htm
      [15] Yang, Y.F., Yao, J., Wang, C.C., 2010b. Oil-Gas-Water Three-Phase Flow Simulation in Water-Wet Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 34(1): 79-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201001020.htm
      [16] 李华昌, 曾焱, 罗宏涛, 2000, 等. 凝析气藏水气交替注入数值模拟研究. 天然气工业, 20(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200003021.htm
      [17] 杨永飞, 姚军, Van Dijke, M.I.J., 2010a. 油藏岩石润湿性对气驱剩余油微观分布的影响机制. 石油学报, 31(3): 467-470. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003022.htm
      [18] 杨永飞, 姚军, 王晨晨, 2010b. 水湿油藏油气水三相渗流模拟. 中国石油大学学报(自然科学版), 34(1): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001020.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  4884
    • HTML全文浏览量:  130
    • PDF下载量:  1003
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-01-10
    • 刊出日期:  2013-07-01

    目录

      /

      返回文章
      返回