Microfacies of Late Ordovician Lianglitage Formation and Their Control on Favorable Reservoir in Tazhong Area
-
摘要: 良里塔格组作为塔里木盆地塔中地区重要的含油气层段引起广泛关注, 但沉积微相分析及其对有利储层控制研究尚且薄弱.研究利用大量岩心、薄片和测井资料, 开展了精细的微相分析、高精度的层序对比及其对有利储层的控制等研究.在良里塔格组碳酸盐岩台地内识别出9种沉积微相(Mf1-Mf9), 概括出台缘礁-滩型(MA1)、台缘-台内滩型(MA2)和台内环潮坪型(MA3)等3种微相组合, 在三级层序内以次级海泛面限定的四级层序中可发育一个或多个微相组合.在高精度层序与沉积微相对比的基础上建立了主要储层段即良里塔格组SQ2高位域的沉积微相模式, 重点揭示了台地边缘各微相发育分布的差异.高能微相是良里塔格组有利储层的物质基础, 易受准同生大气淡水溶蚀且更易产生裂缝从而形成优质储渗体, 低能微相在构造裂缝、埋藏岩溶和(或)表生岩溶叠加改造后也能成为有利储层.Abstract: The Lianglitage Formation has been of great scientific interest for being the main reservoir for oil and gas in Tazhong area, Tarim basin. However, researches on depositional microfacies and their controls on reservoir quality are inadequate. Based on cores, thin-sections and well-logging data, detailed microfacies analysis, high-resolution sequences and controlling factors on favorable reservoir are studied in this paper. 9 microfacies (Mf1-Mf9) are recognized in carbonate platform and 3 microfacies associations(MA1-MA3) are established, which are interpreted as platform margin reef and sand bank, platform margin-interior sand bank, and platform interior peri-tidal types respectively. One or more microfacies associations can be developed within a fourth order sequence which is constrained by subordinated flood surface. Depositional model for HST of SQ2 is constructed, based on high-resolution sequences and microfacies analysis and their correlation between wells. The high energy microfacies are the primitive material for favorable reservoir, because they might have been more probably to be dissolved by meteoric water during penecontemporaneous diagenetic progress, and also more easily to be fractured. The reservoir quality of low energy microfacies could have been improved if tectonic fractures, burial dissolution and/or karstification developed.
-
图 3 塔中地区良里塔格组主要岩石类型
a.鲕粒灰岩,发育孔隙充填沥青(箭头1),塔中30井,5102m;b.核形石生屑泥粒灰岩,颗粒主要为椭球状核形石和海百合碎屑(箭头1),发育裂缝(箭头2),塔中82井,5372m;c.红藻格架灰岩,生物含量>60%,部分格架被方解石充填(箭头1),发育裂缝(箭头2),塔中24井,4499.2m;d.珊瑚障积灰岩,原地珊瑚含量约30%,珊瑚体腔为亮晶方解石,生物间为灰泥,发育缝合线(箭头1),塔中30井,5049m,薄片见图 4d;e.粉屑粒泥灰岩,发育成岩收缩缝(箭头1)和缝合线(箭头2),塔中82井,5467m;f.泥晶灰岩,发育顺层状鸟眼孔(箭头1)和缝合线(箭头2),塔中162井,4595m
Fig. 3. Photographs of cores showing the main types of carbonate rocks of Lianglitage Formation
图 4 塔中地区良里塔格组主要沉积微相
a.Mf1,鲕粒砂屑颗粒灰岩,塔中30井,5061m;b.Mf2,内碎屑生屑颗粒灰岩,塔中26井,4284.4m;c.Mf3,棘屑颗粒灰岩,塔中62井,4751m;d.Mf5,珊瑚障积岩,珊瑚横切面,生物间为泥晶,同图 3d;e.Mf4,红藻格架岩,红藻生物个体,含砂屑,颗粒间为亮晶,塔中30井,5035m;f.同4e,发育裂缝,颗粒表面有生物钻孔;g.Mf6,粉-砂屑生屑泥粒灰岩,塔中82井,5436.2m;h.Mf7,生屑粒泥灰岩,藻类生物,塔中82井,5428.2m;i.Mf9,藻粘结灰岩,发育鸟眼孔,塔中12井,4881.5m
Fig. 4. Photographs of thin-sections showing microfacies of Lianglitage Formation
图 9 塔中地区良里塔格组高能沉积微相组构选择型储集空间
a.鲕粒灰岩(Mf1),密集发育针状溶蚀孔.塔中30井,5102.2m(同图 2a);b.鲕粒灰岩(Mf1)发育粒内孔(箭头3)和铸模孔(箭头2),部分被充填(箭头1),位置同上;c.鲕粒砂屑颗粒灰岩,残余大量粒间孔,塔中83井,5042.8m;d.生物灰岩(Mf4),生物体腔孔发育,部分未完全充填,塔中30井,5091.6m;e.生物格架岩(Mf4),体腔孔发育,塔中82井.薄片均为红(橙)色铸体,单偏光.图c和e来自中石油塔里木油田勘探开发研究院
Fig. 9. Photographs of fabric-selective pores in high energy microfacies of Lianglitage Formation, Tazhong area
图 8 塔中地区良里塔格组储层孔隙类型与沉积微相对应关系(孔隙分类方案参考Choquette and Pray, 1970)
Fig. 8. Relationship between vary pore types and microfacies of the Lianglitage Formation in Tazhong area
表 1 塔中地区良里塔格组发育的主要沉积微相描述与环境解释
Table 1. Microfacies description and sedimentary interpretation of Lianglitage Formation, Tazhong area
微相代码 微相描述 沉积环境解释 微相组合 Mf1 砂屑鲕粒颗粒灰岩,鲕粒为主,其次为砂级内碎屑,分选好,含少量棘皮和藻类化石(图 3a、4a、9a和9b) 台地边缘、潮下高能带 MA1 Mf2 生屑内碎屑颗粒灰岩,颗粒为内碎屑、生屑,分选中等-较好,含棘皮、藻类、软体和苔藓虫等生物化石(图 4b和9c) 台地边缘、潮下中等-高能带 MA2 Mf3 棘屑颗粒灰岩,颗粒主要为棘皮生物碎屑,分选较好,多发育共轴增生型亮晶方解石胶结物,含少量苔藓虫或藻类生屑(图 4c) 台地边缘、潮下带高能带 MA1-2 Mf4 红藻格架岩,红藻类可达50%,含苔藓虫、软体和介形虫等生物,生物间主要为亮晶胶结物(图 3c、4e和4f) 台地边缘,潮下浪基面附近中等-高能带 MA1 Mf5 珊瑚障积岩,珊瑚含量约30%,此外含苔藓虫、腹足、藻类、介形和三叶虫等生物,生物间为泥晶基质(图 3d和4d) 潮下中-低能带 MA1 Mf6 内碎屑生屑核形石泥粒灰岩,颗粒包括粉砂、砂屑、生屑和核形石,分选中-较差,含珊瑚、藻类、苔藓虫和软体生物(图 4g) 潮下中-低能带 MA1-3 Mf7 生屑粒泥灰岩,常发育泥质条纹,含粉砂级内碎屑,以及少量介形虫、苔藓虫、藻、腕足和珊瑚等生物(图 3e和4h) 潮下低能带 MA1-3 Mf8 泥晶灰岩,泥质泥晶灰岩,常发育泥质条纹,仅含少量介形、腹足等生物(图 11b) 台内洼地、潮下低能带 MA2-3 Mf9 藻粘结粒泥灰岩、纹层状泥晶灰岩,不含颗粒或仅含少量粉砂级内碎屑,粘结结构,发育鸟眼孔,含藻和介形虫等(图 4i和11a) 台内潮间-潮上低能带、局限潟湖 MA3 表 2 塔中地区良里塔格组储层基质孔渗统计表(基础数据来源据赵宗举等,2007)
Table 2. Porosity and permeability statistics of Lianglitage Formation, Tazhong area
微相 亚相类型 孔隙度(%) 渗透率(10-3μm2) 样品数 范围 平均值 样品数 范围 平均值 Mf1, 2, 3, 6 粒屑滩 563 0.06~12.74 2.68 303 0.003~348 4.544 Mf4, 5 生物礁 171 0.56~7.15 1.44 90 0.008~318 6.592 Mf7, 8, 9 灰泥丘、滩间海 723 0.10~7.71 1.03 596 0.002~279 1.602 -
[1] Chen, J.S., Wang, Z.Y., Dai, Z.Y., et al., 1999. Study of the Middle and Upper Ordovician Rimmed Carbonate Platform System in the Tazhong Area, Tarim Basin. Journal of Palaeography, 1(2): 8-17(in Chinese with English abstract). http://www.researchgate.net/publication/288658457_Study_of_the_Middle_and_Upper_Ordovician_rimmed_carbonate_platform_system_in_the_Tazhong_area_Tarim_basin [2] Chen, X., Zhao, Z.J., Zhang, B.M., et al., 2009. Delicata Sedimentary Model to Lianglitage Formation of Upper Ordovician in the Northern Margin of Isolated Platform in the Center of Tarim Basin. Acta Sedimentologica Sinica, 27(5): 1002-1011(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200905025.htm [3] Choquette, P.W., Pray, L.C., 1970. Geological Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54: 207-250. http://aapgbull.geoscienceworld.org/content/54/2/207 [4] Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd Edition. Springer, Berlin. [5] Flügel, E., Flügel, C., 1997. Applied Microfacies Analysis: Provenance Studies of Roman Mosaic Stones. Facies, 37(1): 1-48. doi: 10.1007/BF02537369 [6] Gu, J.Y., Zhang, X.Y., Luo, P., et al., 2005. Development Characteristics of Organic Reef-Bank Complex on Ordovician Carbonate Platform Margin in Tarim Basin. Oil and Gas Geology, 26(3): 277-283(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syytrqdz200503003 [7] Huang, W.H., Yang, M., Yu, B.S., et al., 2006. Strontium Isotope Composition and Its Characteristics Analysis of Cambrian-Ordovician Carbonate in Tazhong District, Tarim Basin. Earth Science—Journal of China University of Geosciences, 47(5): 831-836(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200606012.htm [8] Jia, C.Z., Wei, G.Q., 2002. Structural Characteristics and Petroliferous Features of Tarim Basin. Chinese Science Bulletin, 47: 1-11. [9] Lanfranchi, A., Berra, F., Jadoul, F., 2011. Compositional Changes in Sigmoidal Carbonate Coliforms (Late Tithonian, eastern Sardinia, Italy): Insights from Quantitative Microfacies Analyses. Sedimentology, 58(7): 2039-2060. doi: 10.1111/j.1365-3091.2011.01250.x [10] Li, H., Lin, C.S., Zhang, Y.M., et al., 2012. Stratigraphic Architecture and Computer Modeling of Carbonate Platform Margin, Late Ordovician Lianglitage Formation, Central Tarim Basin. Journal of Earth Science, 23(4): 627-638. doi: 10.1007/s12583-012-0279-9 [11] Lin, C.S., Li, H., Liu, J.Y., 2012. Major Unconformities, Tectonostratigraphic Framework, and Evolution of the Superimposed Tarim Basin, Northwest China. Journal of Earth Science, 23(4): 395-407. doi: 10.1007/s12583-012-0263-4 [12] Lin, C.S., Li, S.T., Liu, J.Y., et al., 2011. Tectonic Framework and Paleogeographic Evolution of the Tarim Basin during the Paleozoic Major Evolutionary Stages. Acta Petrologica Sinica, 27(1): 210-218(in Chinese with English abstract). [13] Lin, C.S., Yang, H.J., Liu, J.Y., et al, 2009. Paleostructural Geomorphology of the Paleozoic Central Uplift Belt and Its Constraint on the Development of Depositional Facies in the Tarim Basin. Science in China (Series D): Earth Science, 52(6): 823-834. doi: 10.1007/s11430-009-0061-8 [14] Lin, C.S., Yang, H.J., Liu, J.Y., et al, 2012. Distribution and Erosion of the Paleozoic Tectonic Unconformities in the Tarim Basin, Northwest China: Significance for the Evolution of Paleo-Uplifts and Tectonic Geography during Deformation. Journal of Asian Earth Sciences, 46(2): 1-19. http://www.sciencedirect.com/science/article/pii/S1367912011004238 [15] Liu, L.F., Li, Y., Wang, P., et al, 2008. Reservoir Types and Favorable Oil-Gas Exploration Zone Prediction of the Upper Ordovician Lianglitage Formation in Tazhong No. 1 Fault Belt of Tarim Basin. Journal of Palaeogeography, 10(3): 221-230(in Chinese with English abstract). [16] Liu, Z.B., Yu, B.S., Li, T.Y., et al., 2004. Sequence Development Controls on Iyngenesis Karst of the Middle-Upper Ordovician Carbonate in Tazhong Area, Tarim Basin. Acta Sedimentologica Sinica, 22(1): 103-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200401015.htm [17] Moore, H.C., 2001. Carbonate Reservoir-Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, 74-78. [18] Pan, J.G., Wei, P.S., Cai, Z.X., et al., 2012. Reservoir Architectural System in the Middle-Lower Ordovician Carbonate Rock of Tazhong Areas in Tarim. Earth Science—Journal of China University of Geosciences, 37(4): 751-763(in Chinese with English abstract). [19] Peng, L., Liu, X.P., Lin, C.S., et al., 2009. Late Ordovician Palaeogeomorphology and Its Sedimentary Facies Characteristics in Central Tarim Up-Lift. Oil Geophysical Prospecting, 44(6): 767-772 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYDQ200906023.htm [20] Ren, J.Y., Yang, H.Z., Hu, D.S., et al., 2012. Fault Activity and Its Controlling to Marine Cratonic Breakup in Tarim Basin. Earth Science—Journal of China University of Geosciences, 37(4): 645-653(in Chinese with English abstract). [21] Reolid, M., Gaillard, C., Lathuiliere, B., 2007. Microfacies, Microtaphonomic Traits and Foraminiferal Assemblages from Upper Jurassic Oolitic-Coral Limestones: Stratigraphic Fluctuations in a Shallowing-Upward Sequence (French Jura, Middle Oxfordian). Facies, 53(4): 553-574. doi: 10.1007/s10347-007-0121-5 [22] Tiwari, R.N., Mishra, D., 2007. Microfacies Analysis of Transgressive Condensed Sequence: A Study from the Oxfordian of Kachchh Basin, Gujarat. Journal of the Geological Society of India, 70(6): 923-932. http://www.researchgate.net/publication/288381598_Microfacies_analysis_of_transgressive_condensed_sequence_A_study_from_the_oxfordian_of_Kachchh_Basin_Gujarat [23] Wang, S.M., Jin, Z.Y., Xie, Q.L., et al., 2004. Transforming Effect of Deep Fluids on Carbonate Reservoirs in the Well TZ45 Region. Geological Review, 50(5): 543-547(in Chinese with English abstract). http://www.researchgate.net/publication/283738881_Transforming_effect_of_deep_fluids_on_carbonate_reservoirs_in_the_well_TZ45_region [24] Wang, Z.M., Zhao, K.Z., Wu, G.H., et al., 2007. Characteristics and Main Controlling Factors of the Upper Ordovician Reef-Bank Reservoir Development in the Tazhong I Slope-Break Zone. Oil and Gas Geology, 28(6): 797-801(in Chinese with English abstract). http://www.researchgate.net/publication/288927557_Characteristics_and_main_controlling_factors_of_the_Upper_Ordovician_reef-bank_reservoir_development_in_the_Tazhong_I_slope-break_zone [25] Wang, Z.Y., Sun, C.H., Zhang, Y.F., et al., 2010. Analysis on the Upper Ordovician Reef Formation along the Tazhong Slopebreak I. Acta Sedimentologica Sinica, 28(3): 525- 533(in Chinese with English abstract). http://www.researchgate.net/publication/288858395_Analysis_on_the_upper_Ordovician_reef_formation_along_the_Tazhong_Slopebreak_I [26] Yang, H.J., Zhu, G.Y., Han, J.F., et al., 2011. Conditions and Mechanism of Hydrocarbon Accumulation in Large Reef-Bank Karst Oil/Gas Fields of Tazhong Area, Tarim Basin. Acta Petrologica Sinica, 27(6): 1865-1885(in Chinese with English abstract). [27] Yang, H.J., Li, K.K., Pan, W.Q., et al., 2012. Burial Hydrothermal Dissolution Fluid Activity and Its Transforming Effect on the Reservoirs in Ordovician in Central Tarim. Acta Petrologica Sinica, 28(3): 783-792(in Chinese with English abstract). [28] Yang, H.J., Liu, S., Li, Y.P., et al., 2000. Reservoir Characteristics Analysis of Middle-Upper Ordovician in Tazhong Area. Marine Origin Petroleum Geology, 5(1-2): 73-83. [29] Yang, X.F., Lin, C.S., Yang, H.J., et al., 2010. Application of Natural Gamma Ray Spectrometry in Analysis of Late Ordovician Carbonate Sequence Stratigraphic Analysis in Middle Tarim Basin. Oil Geophysical Prospecting, 45(3): 384-391(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ201003011.htm [30] Yang, X.F., Lin, C.S., Yang, H.J., et al., 2010. Depositional Architecture of the Late Ordovician Drowned Carbonate Platform Margin and Its Responses to Sea-Level Fluctuation in the Northern Slope of the Tazhong Region, Tarim Basin. Petroleum Science, 7(3): 323-336. doi: 10.1007/s12182-010-0074-0 [31] Yu, B.S., Fan, T.L., Huang, W.H., et al., 2007. Predictive Model for Karst Reservoirs in Sequence Stratigraphic Framework. Acta Petrolei Sinica, 28(4): 41-45(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB200704007.htm [32] Zhang, H.J., Wang, X.L., Ding, L., et al., 2007. Carbonate Diagenesis Controlled by Glacioeustatic Sea-Level Changes: A Case Study of the Carboniferous-Permian Boundary Section at Xikou, Zhen'an County, Shanxi Province, China. Earth Science—Journal of China University of Geosciences, 32(3): 329-338(in Chinese with English abstract). http://www.researchgate.net/publication/286749808_Carbonate_diagenesis_controlled_by_glacioeustatic_sea_level_changes_A_case_study_of_the_Carboniferous-Permian_boundary_section_at_Xikou_Zhen'an_County_Shaanxi_Province_China [33] Zhang, L.J., Li, Y., Zhou, C.G., et al., 2007. Lithofacies Paleogeographical Characteristics and Reef-Shoal Distribution during the Ordovician in the Tarim Basin. Oil and Gas Geology, 28(6): 731-737(in Chinese with English abstract). [34] Zhang, P., Hou, G.T., Pan, W.Q., et al., 2011. Effect of Carbonate Rock to Development of Structural Fracture in the Area of Keping, Xinjiang, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(5): 831-836(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/bjdxxb201105009 [35] Zhao, Z., J., Wang, Z.M., Wu, X.N., et al., 2007. Genetic Types and Distribution Forecast of Available Carbonate Reservoirs in Ordovician in the Central Area of Tarim Basin. Petroleum Geology and Experiment, 29(1): 40-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200701007.htm [36] Zhou, X.Y., Wang, Z.M., Yang, H.J., et al., 2006. Tazhong Ordovician Condensate Field in Tarim Basin. Marine Origin Petroleum Geology, 11(1): 45-51(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HXYQ200601008.htm [37] Zhu, D.Y., Hu, W.X., Song, Y.C., et al., 2005. Fluoritization in Tazhong 45 Reservoir: Characteristics and Its Effect on the Reservoir Bed. Acta Petrologica et Mineralogica, 24(3): 205-215(in Chinese with English abstract). http://www.researchgate.net/publication/312974896_Fluoritization_in_Tazhong_45_reservoir_Characteristics_and_its_effect_on_the_reservoir_bed [38] 陈景山, 王振宇, 代宗仰, 等, 1999. 塔中地区中上奥陶统台地镶边体系分析. 古地理学报, 1(2): 8-17. doi: 10.3969/j.issn.1671-1505.1999.02.002 [39] 陈轩, 赵宗举, 张宝民, 等, 2009. 塔里木盆地塔中孤立台地北缘上奥陶统良里塔格组精细沉积建模. 沉积学报, 27(5): 1002-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905025.htm [40] 顾家裕, 张兴阳, 罗平, 等, 2005. 塔里木盆地奥陶系台地边缘生物礁、滩发育特征. 石油与天然气地质, 26(3): 277-283. doi: 10.3321/j.issn:0253-9985.2005.03.003 [41] 黄文辉, 杨敏, 于炳松, 等, 2006. 塔中地区寒武系-奥陶系碳酸盐岩Sr元素和Sr同位素特征. 地球科学——中国地质大学学报, 31(6): 839-845. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606012.htm [42] 贾承造, 魏国齐, 2002. 塔里木盆地构造特征与含油气性. 科学通报, 47(增刊): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1000.htm [43] 林畅松, 李思田, 刘景彦, 等, 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 27(1): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101014.htm [44] 林畅松, 杨海军, 刘景彦, 等, 2009. 塔里木盆地古生代中央隆起带古构造地貌及其对沉积相发育分布的制约. 中国科学(D辑): 地球科学, 39(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903007.htm [45] 刘洛夫, 李燕, 王萍, 等, 2008. 塔里木盆地塔中地区Ⅰ号断裂带上奥陶统良里塔格组储集层类型及有利区带预测. 古地理学报: 10(3): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200803003.htm [46] 刘忠宝, 于炳松, 李廷艳, 等, 2004. 塔里木盆地塔中地区中上奥陶统碳酸盐岩层序发育对同生期岩溶作用的控制. 沉积学报, 22(1) : 103-109. doi: 10.3969/j.issn.1000-0550.2004.01.016 [47] 潘建国, 卫平生, 蔡忠贤, 等, 2012. 塔中地区中-下奥陶统碳酸盐岩孔洞—裂缝储集系统划分及其特征. 地球科学——中国地质大学学报, 37(4): 751-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204015.htm [48] 彭莉, 刘小平, 林畅松, 等, 2009. 塔中隆起晚奥陶世古地貌及其沉积相特征. 石油地球物理勘探, 44(6): 767-772. doi: 10.3321/j.issn:1000-7210.2009.06.021 [49] 任建业, 阳怀忠, 胡德胜, 等, 2012. 塔里木盆地中央隆起带断裂活动及其对海相克拉通解体的作用. 地球科学——中国地质大学学报, 37(4): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204005.htm [50] 王嗣敏, 金之钧, 解启来, 2004. 塔里木盆地塔中井区碳酸盐岩储层的深部流体改造作用. 地质评论, 50(5): 543-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200405016.htm [51] 王招明, 赵宽志, 邬光辉, 等, 2007. 塔中I号坡折带上奥陶统礁滩型储层发育特征及其主控因素. 石油与天然气地质, 28(6): 797-801. doi: 10.3321/j.issn:0253-9985.2007.06.014 [52] 王振宇, 孙崇浩, 张云峰, 等, 2010. 塔中I号坡折带上奥陶统成礁背景分析. 沉积学报, 28(3): 525-533. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003016.htm [53] 阳孝法, 林畅松, 杨海军, 等, 2010. 自然伽马能谱在塔中地区晚奥陶世碳酸盐岩层序地层分析中的应用. 石油地球物理勘探, 45(3): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201003011.htm [54] 杨海军, 刘胜, 李宇平, 等, 2000. 塔中地区中-上奥陶统碳酸盐岩储集层特征分析. 海相油气地质, 5(1-2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ2000Z1019.htm [55] 杨海军, 朱光有, 韩剑发, 等, 2011. 塔里木盆地塔中礁滩体大油气田成藏条件与成藏机制研究. 岩石学报, 27(6): 1865-1885 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106025.htm [56] 杨海军, 李开开, 潘文庆, 等, 2012. 塔中地区奥陶系埋藏热液溶蚀液体活动及其对深部储层的改造作用. 岩石学报, 28(3): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm [57] 于炳松, 樊太亮, 黄文辉, 等, 2007. 层序格架中岩溶储层发育的预测模型. 石油学报, 28(4): 41-45. doi: 10.3321/j.issn:0253-2697.2007.04.008 [58] 张海军, 王训练, 丁林, 等, 2007. 冰川海平面变化控制下的台地碳酸盐岩成岩作用: 以陕西镇安西口石炭—二叠系界线剖面为例. 地球科学——中国地质大学学报, 32(3): 329-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703004.htm [59] 张丽娟, 李勇, 周成刚, 等, 2007. 塔里木盆地奥陶纪岩相古地理特征及礁滩分布. 石油与天然气地质, 28(6): 731-737. doi: 10.3321/j.issn:0253-9985.2007.06.005 [60] 张鹏, 侯贵廷, 潘文庆, 等, 2011. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响. 北京大学学报(自然科学版), 47(5): 831-836. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201105010.htm [61] 赵宗举, 王招明, 吴兴宁, 等, 2007. 塔里木盆地塔中地区奥陶系储层成因类型及分布预测. 石油实验地质, 29(1): 40-46. doi: 10.3969/j.issn.1001-6112.2007.01.007 [62] 周新源, 王招明, 杨海军, 等, 2006. 塔中奥陶大型凝析气田的勘探和发现. 海相油气地质, 11(1): 45-51. doi: 10.3969/j.issn.1672-9854.2006.01.008 [63] 朱东亚, 胡文瑄, 宋玉才, 等, 2005. 塔里木盆地塔中45井油藏萤石化特征及其对储层的影响. 岩石矿物学杂志, 24(3): 205-215. doi: 10.3969/j.issn.1000-6524.2005.03.006