Application of Logging Data to the Sediment Size-Grading Inversion
-
摘要: 岩石颗粒大小及其粒序是沉积岩主要特征, 是沉积物沉积环境和古地理分析的主要评价指标.同时, 也是影响沉积物成岩环境及其物性的主要因素.由于PDC钻头的广泛应用, 使得录井岩性及其粒级的识别存在较大的误差, 制约了地质研究的深入开展.结合岩心粒度分析资料, 利用自然伽马、中子、密度、声波及电阻率曲线, 通过测井地质分析, 提取对地层岩性及粒度响应灵敏的M、N及其深浅电阻率比值等参数, 建立了反演沉积物粒度的模型, 根据现场资料的处理以及与岩心资料的对比, 结果表明, 该模型能够较好地反演沉积物的粒度, 为地质研究提供较为准确的连续粒序剖面.Abstract: Rock particle-size and grading are the main features of sedimentary rocks, and also the main indicators to evaluate the deposition environment and ancient geographical analysis of the sediment. Meanwhile, it's also the controlling factors that influence sediment's diagenetic environment and physical property. Because of the widely use of PDC bit, there is a greater error between logging lithology and size grade, which has restricted the further development of geologic research. By utilizing GR, CNL, DEN, DT and resistivity curves, we abstract the parameters M, N, which is sensitive to particle size and lithology, and another parameters-the ratio of deep resistivity and shallow resistivity, combining with the particle-size analysis data of core. Then, we establish the inversion model for particle size of sediment through logging geology analysing. The field data processing and contrast of core data has proved this model feasible in inverting the sedimentary particle-size, and providing a sequential size graded profile.
-
Key words:
- well logging /
- sedimentary rocks /
- particle-size analysis /
- grading profile /
- inversion /
- petroleum geology
-
表 1 研究区岩性类型与平均粒径对应数据
Table 1. Lithologic type and average particle size corresponding data tables
岩性描述 砾状砂 含砾粗砂岩 中砂岩 细砂岩 粉砂岩 泥质粉砂岩 砂质泥岩 平均粒径(mm) 1.78 2.32 3.17 3.71 4.54 5.01 5.61 平均粘土含量(%) 8.6 9.2 8.7 12.1 16.3 18.2 23.4 -
[1] Chen, G.Y., Zhou, Y.L., Hu, Y., 2011. The Petrophysics Characterization of Clastic Reservoir and the Methods of Lithology. Journal of Southwest Petroleum University (Science & Technology Edition), 33(2): 21-27(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XNSY201102002.htm [2] Li, C.A., Zhang, Y.F., Yuan, S.Y., et al., 2010. Grain Size Characteristics and Origin of the "Wushan Loess" at Wushan Area. Earth Science—Journal of China University of Geosciences, 35(5): 879-884(in Chinese with English abstract). doi: 10.3799/dqkx.2010.102 [3] Liu, X.J., Kang, G.Z., Li, X.Q., 2008. Calculation of Median Grain Dumeter in the Reservoir of He8 Section Su X Well Field, Sulige Area and Its Application. World Well Logging Technology, 23(1): 17-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWCJ200801011.htm [4] Lu, G.M., 2010. Logging Comprehensive Identification Technology of Deep Sandy Conglomerate Lithology, Dongying Sag. Well Logging Technology, 34(2): 168-171(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJJS201002018.htm [5] Luo, L., Zhu, X.F., Chang, J., et al., 2007. Logging Recognition Methods for Clastic Rocks with Different Granularities in Block Su5 and Tao7. Natural Gas Industry, 27(12): 36-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200712013.htm [6] Wang, H.Y., Fan, T.L., Zhao, W.Y., et al., 2008. Study of the Method for Identification of Carbonatite Logging Sequence Stratigraphy—A Case Study of the Ordovician in the Ka1 Area of Tazhong Uplift, Tarim Basin. Earth Science Frontiers, 15(2): 51-58(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200802007.htm [7] Yang, Y., Jiang, Z.X., Zhang, X.L., et al., 2010. Factors Controlling and Lithofacies Interpretation for Compacted Reservoirs in H3 Member of Daniudi Gas Field. Journal of Northwest University (Natural Science Edition), 40(4): 699-707(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ201004037.htm [8] Zhang, X.G., Hu, X.H., Wang, Y.Q., et al., 2008. Application of Rock Characteristic Measurement Technologies on Logging Comprehensive Interpretation. China Measurement & Testing Technology, 34(5): 113-115(in Chinese with English abstract). http://www.researchgate.net/publication/312942541_Application_of_rock_characteristic_measurement_technologies_on_logging_comprehensive_interpretation [9] Zhang, Z.S., Zhang, C.M., 2007. Application of Logging Data and Sedimentary Facies Analysis to the Glutenites. Journal of Oil and Gas Technology (Natural Science Edition), 29(4): 91-94(in Chinese with English abstract). http://www.cqvip.com/QK/94420A/20074/25859732.html [10] Zhu, R., Zhang, C.M., Gong, F.H., et al., 2010. Use of Sediment Dynamic Analysis in Environment Interpretation: A Case Study on Honghuatao Formation, Upper Cretaceous of Western Jianghan Basin, Hubei Province. Geological Journal of China Universities, 16(3): 358-364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201003010.htm [11] 陈恭洋, 周艳丽, 胡勇, 2011. 碎屑岩储层岩石物理特征及岩性解释方法. 西南石油大学学报(自然科学版), 33(2): 21-27. doi: 10.3863/j.issn.1674-5086.2011.02.003 [12] 李长安, 张玉芬, 袁胜元, 等, 2010. "巫山黄土"粒度特征及其对成因的指示. 地球科学——中国地质大学学报, 35(5): 879-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005018.htm [13] 刘行军, 康国珍, 李新岐, 2008. 苏里格地区苏X井区盒8段储层粒度中值的计算及其应用. 国外测井技术, 23(1): 17-19. [14] 鲁国明, 2010. 东营凹陷深层砂砾岩岩性测井综合识别技术. 测井技术, 34(2): 168-171. doi: 10.3969/j.issn.1004-1338.2010.02.015 [15] 罗利, 朱心方, 常俊, 等, 2007. 苏5、桃7区块不同粒度碎屑岩测井识别方法. 天然气工业, 27(12): 36-38. doi: 10.3321/j.issn:1000-0976.2007.12.010 [16] 王宏语, 樊太亮, 赵为永, 等, 2008. 碳酸盐岩测井层序识别方法研究——以塔中隆起卡1地区奥陶系为例. 地学前缘, 15(2): 51-58. doi: 10.3321/j.issn:1005-2321.2008.02.007 [17] 杨懿, 姜在兴, 张小莉, 等, 2010. 大牛地气田盒3段致密储层控制因素及测井岩相研究. 西北大学学报(自然科学版), 40(4): 699-707. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201004037.htm [18] 张晓岗, 胡晓辉, 王艳青, 等, 2008. 岩石特性测量技术在测井综合解释中的应用. 中国测试技术, 34(5): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200805033.htm [19] 张占松, 张超谟, 2007. 测井资料沉积相分析在砂砾岩体中的应用. 石油天然气学报(自然科学版), 29(4): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200704017.htm [20] 朱锐, 张昌民, 龚福华, 等, 2010. 粒度资料的沉积动力学在沉积环境分析中的应用: 以江汉盆地西北缘上白垩统红花套组沉积为例. 高校地质学报, 16(3): 358-364. doi: 10.3969/j.issn.1006-7493.2010.03.009