SHRIMP U-Pb Dating of Greenschist from Dashuigou Schiefer, Shimian County, Shichuan Province and Its Geological Significance
-
摘要: 大水沟岩片位于安宁河深大断裂带中段, 川西松潘甘孜造山带与扬子地台结合部位, 因其特殊的构造位置和赋存碲矿床而备受重视.运用SRHIMP U-Pb定年技术对大水沟绿片岩进行年龄测试, 来确定大水沟岩片的形成时代, 为大水沟周缘石棉-冕宁一带乃至川西扬子地台西缘的构造岩浆演化提供有益信息, 同时为大水沟碲铋矿床的形成时代提供线索.大水沟原岩恢复表明其应当有相当部分为沉积岩, 运用SHRIMP U-Pb定年从中获得的5种不同年龄段具有内部结构、外观特征的锆石差异.2467~2358Ma年龄的残留碎屑岩浆锆石说明扬子地台西缘存在太古代-古元古代的物源搬运; 790.5~762.5Ma的岩浆锆石与新元古代早期Rodinia超大陆裂解、地幔柱上涌时的岩浆事件有关; 696.8~642.9Ma锆石年龄反映了大水沟周缘碰撞造山和后造山期岩浆活动和变质作用; 伴随峨眉地裂大规模基性岩浆活动, 在大水沟近源很可能有262.0~220.0Ma碱性杂岩的侵入; 典型热液增生锆石216.5~167.1Ma年龄揭示了该区中侏罗世大规模的岩浆期后热液活动.大水沟岩片可能为异地推覆系统, 岩浆锆石年龄和热液增生锆石年龄限制了大水沟岩片总体定位于220.0~167.1Ma之间.Abstract: Located at the central of the Anning River discordogenic fault, the binding site of the Songpan-Ganze orogenic belt and the Yangtze block, Dashuigou schiefer has attracted increasing attention of researchers regarding to its special tectonic site and the occurred tellurium deposit. In order to provide chronologic evidences for reconstructing tectonic and magmatic geochronic evolution of areas around Dashuigou and the western margin of the Yangtze block in Shichuan, as well as for locating time of Dashuigou schiefer, zircon ages of the greenschist from Dashuigou were determined by SHRIMP U-Pb dating technique. Five age groups of the zircons with different characteristics of inner texture and cosmetics are obtained and subdivided from the greenschist of Dashuigou schiefer which should contain great proportions of sediments in the protolith. Ages of 2467-2430Ma from remained detrital magma zircons shows the mass transportation of Archaean-early proterozoic basement, whereas ages of 790.5-762.5Ma probably represent the magmatic event around Dashuigou on the background of Rodinia crack and upwelling mantle in early neoproterozoic. Metamorphism and magmation generated by orogenics and post orogenics are documented by ages of 696.8-642.9Ma from the magmatic zircons. Zircons of 262.0-220.0Ma ages are inferred to have been originated from alkalic rock nearby related to the Emeishan movement.216.5-167.1Ma ages of typical new growth and re-crystallized zircons caused by hydrothermal alteration reveal the post-magmatic hydrothermal activity. Dashuigou schiefer is probably allochthonic thrust sheet, and ages from magma zircons and those thermal genetics bound its general locating time to the interval from 220.0Ma to 167.1Ma.
-
Key words:
- Dashuigou schiefer /
- protolith /
- geochronology /
- magmation /
- thermal zircons /
- petrology
-
图 1 大水沟区域构造略图(据喻安光等改编,1998)
1.T-P1.三叠系-二叠系下统;2.S1-S2-3.志留系通化群;3.γ52侏罗纪二长花岗岩;4.γ22早震旦世中粒二长花岗岩;5.Ar-Pt康定杂岩;F1.滨东滑脱韧性剪切带;F2.西油坊逆冲推覆韧性剪切带;F3.拉谷盆子滑脱韧性剪切带;F4.野鸡洞逆冲推覆韧性剪切带;Ⅰ.洪坝构造岩片;Ⅱ.大水沟构造岩片;Ⅲ.蟹螺构造岩片;Ⅳ.岩勒构造岩片;Ⅴ.挖角坝构造岩片
Fig. 1. Tectonic and geologic map of the Dashuigou region
图 3 岩石类型La/Tb-∑REE判别图解(据Allegre, 1978)
Fig. 3. La/Yb-∑REE discriminant diagram of rock types
图 4 区分正副变质岩的Zr/TiO2-Ni和Rfm-Rfl-Rv图解(a.据Wenchester et al., 1980; b.据王仁民等,1987)
Fig. 4. Zr/TiO2-Ni diagram and Rfm-Rfl-Rv diagram for differing orthorock from pararock
表 1 大水沟绿片岩主量(%)和微量元素(μg/g)分析结果
Table 1. Major (%) and trace elements (μg/g) analyses of green schist, Dashuigou
样号名称 H1片岩 H2片岩 H3片岩 H4片岩 H5片岩 SiO2 45.45 44.02 39.20 39.64 37.89 TiO2 1.70 1.70 1.35 1.48 1.85 Al2O3 14.46 17.49 16.88 16.16 18.06 Fe2O3 3.80 4.67 3.16 3.26 2.86 FeO 10.84 8.17 9.75 9.01 11.98 MnO 0.26 0.22 0.20 0.20 0.21 MgO 7.26 7.97 8.14 7.73 9.37 CaO 7.57 10.15 9.64 10.69 7.49 Na2O 1.77 2.47 1.67 1.66 1.68 K2O 0.80 0.31 2.38 2.39 2.35 P2O5 0.30 0.37 0.16 0.32 0.26 H2O+ 1.91 1.91 1.85 1.58 2.67 H2O- 0.06 0.06 0.13 0.11 0.19 S 0.15 0.15 0.18 0.20 0.10 CO2 3.14 0.65 4.04 4.87 1.57 Total 99.47 100.31 98.74 99.30 98.53 Cs 4.37 4.01 4.07 4.34 4.00 Rb 41.90 14.34 29.30 252.09 118.43 Sr 215.00 201.05 128.00 199.00 219.60 Ba 269.00 250.44 289.00 315.39 348.92 Ga 28.34 19.45 21.97 20.88 25.56 Nb 18.30 16.20 6.21 17.14 17.92 Ta 1.66 1.20 1.22 1.36 1.36 Zr 134.00 94.00 78.90 113.00 101.00 Hf 3.36 13.00 3.45 2.70 4.40 Th 6.05 1.85 4.41 1.48 1.69 V 325.50 285.10 306.27 254.90 378.80 Cr 175.80 162.80 188.50 229.00 173.70 Co 58.90 54.94 47.70 26.26 61.89 Ni 90.30 89.17 103.73 123.20 98.82 B 4.10 3.50 3.67 4.20 3.30 Li 24.40 22.86 22.20 41.56 41.36 Sc 41.57 37.45 39.65 38.19 43.31 U 1.55 1.45 0.69 0.52 0.58 Cu 21.45 19.46 44.02 61.42 51.18 Zn 272.44 177.15 156.27 145.55 146.10 Pb 28.90 36.18 27.03 24.81 20.08 La 15.50 19.46 11.20 18.47 21.18 Ce 36.30 34.78 26.60 30.59 36.90 Pr 4.79 4.76 3.28 4.28 4.96 Nd 20.20 20.71 12.90 17.91 21.21 Sm 4.51 5.51 3.23 4.68 5.29 Eu 1.51 1.55 1.40 1.90 1.95 Gd 3.70 4.55 2.58 3.96 4.27 Tb 0.77 1.10 0.50 0.99 0.96 Dy 4.95 6.68 2.93 6.32 5.68 Ho 0.90 1.42 0.55 1.31 1.17 Er 2.58 3.71 1.60 3.38 3.12 Tm 0.40 0.58 0.25 0.54 0.48 Yb 2.35 3.17 1.43 2.91 2.52 Lu 0.35 0.41 0.24 0.40 0.34 Y 23.50 39.78 14.30 38.63 33.86 REE 122.31 148.14 82.99 136.27 143.89 LREE 82.81 86.76 58.61 77.84 91.48 HREE 16.00 21.60 10.08 19.81 18.54 LR/HR 5.18 4.02 5.81 3.93 4.93 表 2 大水沟岩片绿片岩锆石SHRIMP U-Pb年龄分析结果
Table 2. Analytical data of SHRIMP U-Pb isotope of zircon grains from greenshcist, in Dashuigou schiefer
样点编号 U(10-6) Th(10-6) 232Th/238U 206Pbc(%) 206Pb*(10-6) 206Pb/238U(Ma) 1δerr 208Pb/232Th(Ma) 1δerr 207Pb/206Pb(Ma) 1δ err 207Pb*/206Pb* err (%) 207Pb*/235U err (%) 206Pb*/238U err (%) err corr G3784-2#-27.1 56 53 0.97 3.23 6.5 790.5 13.0 599 43 34 261 0.0467 10.9 0.84 11.0 0.1305 1.7 0.158 G3784-2#-12 56 78 1.43 2.10 6.3 780.0 8.2 694 26 309 173 0.0525 7.6 0.93 7.7 0.1286 1.1 0.146 G3784-2#-1-2.1 82 148 1.87 1.45 8.9 762.5 6.6 677 23 548 105 0.0585 4.8 1.01 4.9 0.1256 0.9 0.187 G3784-2#-18.1 44 61 1.43 2.54 4.4 696.4 9.2 569 27 299 227 0.0523 10.0 0.82 10.1 0.1141 1.4 0.138 G3784-2#-1-1.1 106 118 1.15 1.08 10.4 689.4 6.0 607 14 444 86 0.0558 3.9 0.87 4.0 0.1129 0.9 0.229 G3784-2#-6.1 136 96 0.73 1.10 13.4 688.7 4.9 567 28 504 77 0.0573 3.5 0.89 3.6 0.1127 0.8 0.210 G3784-2#-10 301 160 0.55 0.46 29.0 682.4 3.8 608 12 603 37 0.0600 1.7 0.92 1.8 0.1117 0.6 0.330 G3784-2#-9 266 149 0.58 0.41 25.1 669.0 4.3 619 16 538 51 0.0582 2.3 0.88 2.4 0.1094 0.7 0.281 G3784-2#-31.2 304 191 0.65 0.14 27.9 653.3 3.7 617 9 649 30 0.0613 1.4 0.90 1.5 0.1066 0.6 0.391 G3784-2#-32.2 248 130 0.54 0.32 22.8 651.8 4.1 598 12 604 38 0.0600 1.7 0.88 1.9 0.1064 0.7 0.356 G3784-2#-14.1 435 201 0.48 0.30 39.6 647.1 3.3 595 14 581 26 0.0594 1.2 0.86 1.3 0.1056 0.5 0.414 G3784-2#-8.1 199 247 1.28 0.72 18.1 642.9 4.0 600 10 646 47 0.0612 2.2 0.88 2.3 0.1049 0.7 0.287 G3784-2#-33.2 176 84 0.49 0.74 9.6 392.4 6.7 574 21 586 99 0.0595 4.6 0.51 4.9 0.0628 1.8 0.360 G3784-2#-23.1 285 84 0.31 0.87 13.9 353.1 14.2 346 22 336 70 0.0532 3.1 0.41 5.2 0.0563 4.1 0.800 G3784-2#-5.1 148 205 1.42 3.30 5.5 262.0 2.7 223 10 -841 510 0.0334 17.8 0.19 17.8 0.0415 1.1 0.059 G3784-2#-7.1 72 116 1.66 3.89 2.6 260.9 4.5 222 13 64 157 0.0313 25.3 0.18 25.4 0.0413 1.8 0.070 G3784-2#-22.1 176 291 1.71 1.26 6.3 260.9 2.1 240 6 -1036 757 0.0473 6.6 0.27 6.7 0.0413 0.8 0.125 G3784-2#-11 100 191 1.96 3.50 3.6 256.5 3.5 195 22 -522 603 0.0375 22.5 0.21 22.6 0.0406 1.4 0.061 G3784-2#-25.1 227 441 2.00 1.77 8.0 255.3 2.0 234 5 -231 192 0.0419 7.6 0.23 7.7 0.0404 0.8 0.104 G3784-2#-20.1 104 199 1.98 3.68 3.7 255.2 4.0 222 14 -1048 683 0.0311 22.8 0.17 22.8 0.0404 1.6 0.070 G3784-2#-21.1 166 529 3.30 1.92 5.8 252.6 2.4 228 6 -128 217 0.0437 8.8 0.24 8.9 0.0400 1.0 0.110 G3784-2#-16.1 46 74 1.67 2.30 1.6 249.6 7.1 222 13 -301 551 0.0408 21.6 0.22 21.8 0.0395 2.9 0.134 G3784-2#-17.1 210 428 2.11 1.00 7.1 247.9 1.8 226 4 152 103 0.0491 4.4 0.27 4.5 0.0392 0.8 0.169 G3784-2#-13.1 228 664 3.01 1.67 7.8 247.8 2.1 221 3 -116 170 0.0439 6.9 0.24 6.9 0.0392 0.9 0.125 G3784-2#-3.1 204 598 3.03 1.71 6.9 245.0 2.0 210 3 -204 207 0.0424 8.2 0.23 8.3 0.0387 0.8 0.099 G3784-2#-15.1 954 1691 1.83 0.34 31.2 240.2 1.2 211 5 114 57 0.0483 2.4 0.25 2.5 0.0380 0.5 0.203 G3784-2#-24.1 533 1471 2.85 0.91 16.9 232.3 1.3 228 4 -87 94 0.0444 3.8 0.22 3.9 0.0367 0.6 0.150 G3784-2#-26.1 1556 3617 2.40 0.25 48.6 229.6 1.0 203 2 193 25 0.0500 1.1 0.25 1.2 0.0363 0.5 0.389 G3784-2#-28.1 1822 4576 2.60 0.17 56.6 228.4 1.0 202 2 238 21 0.0509 0.9 0.25 1.0 0.0361 0.4 0.449 G3784-2#-19.1 909 2596 2.95 0.58 28.2 227.1 1.1 196 3 89 49 0.0478 2.1 0.24 2.1 0.0359 0.5 0.238 G3784-2#-37.1 799 1423 1.84 0.32 23.9 220.0 1.7 198 2 174 42 0.0496 1.8 0.24 1.9 0.0347 0.8 0.403 G3784-2#-35.1 3411 1022 0.31 0.45 100.5 216.5 0.9 216 4 273 22 0.0517 1.0 0.24 1.1 0.0342 0.4 0.409 G3784-2#-30.1 5209 293 0.06 0.54 130.9 184.9 1.2 230 20 215 25 0.0504 1.1 0.20 1.3 0.0291 0.7 0.518 G3784-2#-31.1 4596 241 0.05 0.22 112.4 180.5 1.6 221 9 164 18 0.0493 0.8 0.19 1.2 0.0284 0.9 0.762 G3784-2#-29.1 4479 52 0.01 0.14 105.5 174.1 1.8 115 30 133 17 0.0487 0.7 0.18 1.3 0.0274 1.0 0.825 G3784-2#-32.1 3838 134 0.04 0.14 89.3 172.0 0.8 172 10 157 17 0.0492 0.7 0.18 0.9 0.0270 0.5 0.564 G3784-2#-33.1 4455 182 0.04 0.16 103.6 172.0 1.1 172 11 173 18 0.0495 0.8 0.18 1.0 0.0270 0.7 0.651 G3784-2#-34.1 4952 183 0.04 0.19 114.9 171.5 0.7 180 13 115 20 0.0483 0.8 0.18 0.9 0.0270 0.4 0.457 G3784-2#-36.1 5356 211 0.04 0.17 121.1 167.1 1.8 150 10 150 17 0.0490 0.7 0.18 1.3 0.0263 1.1 0.832 G3784-1#-1.1 145 317 2.26 1.15 10.9 533.0 4.0 477 10 259 111 0.0514 4.9 0.61 4.9 0.0862 0.8 0.158 G3784-1#-2.1 37 40 1.11 9.08 0.7 127.0 5.2 88 24 0.0199 4.1 G3784-1#-3.1 200 107 0.56 0.28 58.7 1892.7 9.9 1649 23 2430 9 0.1576 0.5 7.42 0.8 0.3412 0.6 0.761 G3784-1#-4.1 193 103 0.55 1.44 7.5 282.6 2.4 233 16 -17 181 0.0457 7.5 0.28 7.5 0.0448 0.9 0.116 G3784-1#-5.1 193 101 0.54 0.25 61.7 2030.7 11.0 2217 31 2400 9 0.1548 0.5 7.90 0.8 0.3703 0.6 0.765 G3784-1#-6.1 522 456 0.90 3.61 19.1 259.5 1.7 169 10 -38 180 0.0453 7.4 0.26 7.5 0.0411 0.7 0.092 G3784-1#-7.1 509 451 0.92 0.39 118.6 1542.5 6.8 1436 15 2358 9 0.1511 0.5 5.63 0.7 0.2703 0.5 0.695 G3784-1#-8.1 141 73 0.53 0.63 45.6 2049.7 15.7 1790 57 2467 16 0.1611 0.9 8.32 1.3 0.3743 0.9 0.686 注:(1)1#为上部细粒斜长角闪片岩中的N1锆石,2#为下部阳起石斜长角闪片岩中的N2锆石;(2)206Pbc表示普通206Pb占总206Pb的百分比,206Pb*表示放射性206Pb的含量. -
[1] Allègre, C.J., Minster, J.F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1 [2] Chen, Y.C., Mao, J.W., Luo, Y.N., et al., 1996. Geology and Geochemistry of the Dashuiguo Te-(Au) Deposit, Sichuan Province. Atomic Energy Press, Beijing, 23-28 (in Chinese). [3] Du, L.L., Geng, Y.S., Yang, C.H., et al., 2005. Geochemistry and SHRIMP U-Pb Zircon Chronology of Basalts from the Yanbian Group in the Western Yangtze Block. Acta Geologica Sinica, 79(6): 805-812(in Chinese with English abstract). http://www.researchgate.net/publication/279606357/download [4] Guo, J.Q., You, Z.P., Wang, D.K., 1997. Deformed and Metamorphic Features of Dashuigou Microlithon, Shimian, in the Western Margin of Yangtze Landmass. Acta Geologic Shichuan, 17(3): 1997(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB199703001.htm [5] Hoskin, P.W.O., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. doi:10.1046/ j.1525-1314.2000.00266.x [6] Hou, L.W., 1999. Type and Origin of the Core Complexes and the Domal Deformational-Metamorphic Bodies in the Western Margin of the Yangtze Craton. Acta Geologic Sichuan, 16(1): 6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB601.001.htm [7] Hu, J.M., Meng, Q.R., Shi, Y.R., et al., 2005. SHRIMP U-Pb Dating of Zircons from Granitoid Bodies in the Songpan-Ganzi Terrane and Its Implications. Acta Petrologica Sinica, 21(3): 867-880(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503027.htm [8] Li, Z.X., Li, X.H., Zhou, H., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC [9] Li, W. X, Li, X.H., Li, Z.X., 2008. Middle Neoproterozoic Syn-Rifting Volcanic Rocks in Guangfeng, South China: Petro-Genesis and Tectonic Significance. Geological Magazine, 145(4): 475-489. doi: 10.1017/S0016756808004561 [10] Li, X.H., Zhou, H.W., Li, Z.X., et al., 2002. Petro-Genesis of Neo-Proterozoic Bimodal Volcanic in Western Shichuan and Its Tectonic Implications: Geo-Chemical and Sm-Nd Isotopic Constrains. Scientia Geologica Sinica, 37(3): 264-276(in Chinese with English abstract). [11] Li, Z.X., Li, X.H., Kinny. P.D., et al., 1999. The Breakup of Rodinia: Did it Start With a Mantle Plume Beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. doi:10.1016 /S0012-821X(99)00240-X [12] Li, Z.X., Li, X.H., Kinney, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke-Up Rodinia. Precambrian Research, 122(1-4): 85-109. doi: 10.1016/S0301-9268 (02)00208-5 [13] Liati, A., Gebauer, D., Wysoczanski, R., 2002. U-Pb SHRIMP-Dating of Zircon Domains from UHP Garnet-Rich Mafic Rocks and Late Pegmatoids in the Rhodope Zone (N Greece): Evidence for Early Cretaceous Crystallization and Late Cretaceous Metamorphism. Chemical Geology, 184(3-4): 281-299. doi: 10.1016/S0009-2541 (01)00367-9 [14] Lin, G.C., 2010. Zircon U-Pb Age and Petrochemical Characteristics of Shimain Granite in Western Shichuan: Petrogenesis and Tectonic Significance. Earth Science—Journal of China University of Geosciences, 35(4): 612-620(in Chinese with English abstract). [15] Lin, G.C., Li, X.H., Li, W.X., 2006. SHRIMP U-Pb Zircon Geochronology Geochemistry and Nd-Hf Isotope of Neoproterozoic Magmatic Rocks in Western Sichuan: Petrogenesis and Tectonic Significance. Science China (Series D): Earth Sciences, 36(7): 630-645 (in Chinese). [16] Lin, Q.C., Xia, B., Zhang, Y.Q., 2006. Zircon SHRIMP U-Pb Dating of the Cida Alkali Complex in the Dechang Area, Southern Sichuan, China. Geological Bulletin of China, 25(3): 588-597(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252289562.html [17] Ling, W.L., Gao, S., Zhang, B.R., et al. 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-Up of the Rodinia Supercontinent. Precambrian Research, 122(1-4): 111-140. doi: 10.1016/S0301-00222-X [18] Liu, F.L., Xu, Z.Q., Song, B., 2003. Determination of UHP and Retrograde Metamorphic Ages of the Sulu Terrane: Evidence from SHRIMP U-Pb Dating of Zircons on Gneissic Rocks. Acta Geologica Sinica, 77(2): 229-238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200302018.htm [19] Liu, J.D., Zhang, C.J., Liu, X.F., et al., 2004. Metallogenic Regularities and Exploring Direction of the Southwest Yangtze Landmass. Geological Publishing House, Beijing, 178-189(in Chinese). [20] Pidgeon, R.T., 1992. Recrystallization of Oscillatory Zoned Zircon: Some Geochronological and Petrological Implications. Contributions to Mineralogy and Petrology, 110(4): 463-472. doi: 10.1007/BF00344081 [21] Shaw, D.M., 1972. The Origin of Apeley Gneiss, Ontaria, Canada. Journal of Earth Science, 9: 18-35. doi: 10.1139/e72-002 [22] Stacey, J.S. Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-228. doi:10.1016 /0012-821X(75)90088-6 [23] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review (Suppl. ), 48: 26-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [24] Tomaschek, F., Kennedy, A.K., Villa, I.M., et al., 2003. Zircons from Syros, Cyclades, Greece Recrystallization and Mobilization of Zircon during High Pressure Metamorphism. Journal of Petrology, 44(11): 1977-2002. doi: 10.1093/petrology/egg067 [25] Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite to Granulite Facies Zircon: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. doi: 10.1007/s004100050492 [26] Wang, K.M., Kan, Z.Z., 2001. Geological Response to Formation of the Rodinia Supercontinent in Western Margin of the Yangtze Platform. Geological and Mineral Resources of South China, 4: 22-27 (in Chinese with English abstract). http://www.researchgate.net/publication/283360993_Geological_response_to_formation_of_the_Rodinia_supercontinent_in_western_margin_of_the_Yangtze_platform [27] Wang, R.C., Shen, W.Z., Xu, S.J., et al., 1995. Isotopic Geology of the Dashuigou Te-Deposit, Shimian County, Sichuan Province. Journal of Nanjing University (Natural Sciences), 31(4): 617-624 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ504.013.htm [28] Wang, R.M., He, G.P., Chen, Z.Z., et al., 1987. Graphic Method for Protolith Metamorphic Rocks. Geological Publishing House, Beijing, 9-60(in Chinese). [29] Wenchester, J.A., Park, R.G., Holland, J.G., 1980. The Geochemistry of Lewisian Semipelitic Schists from the Gairloch District, Western Ross. Scottish Journal of Geology, 16: 165-179. doi: 10.1144/sjg16020165 [30] Wu, G.Y., 1990. Precambrian Tectonic Evolution of Kangding-Luding Area, Western Sichuan. Geotectonica et Metallogenia, 44(3): 239-246(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK199003006.htm [31] Wu, Y.B., Zheng, Y.F., 2004. Study of Genesis Mineralogy of Zircon and Its Constrain on U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [32] Xia, B., Liu, H.Y., Zhang, Y. Q, 2004. SHRIMP Dating of Agpaitic Alklic Rocks in Panxi Rift Zone and Its Geologic Implications: Examples for Hongge, Baima and Jijie Rock Bodies. Geotectoinc et Metallogenia, 28: 149-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200402005.htm [33] Xu, S.J., Shen, W.Z., Wang, R.C., et al., 1998. Zircon U-Pb Dating of Ore-Bearing Amphibolite in Dashuigou Tellurium Deposit. Chinese Science Bulletin, 43(8): 883-885 (in Chinese). doi: 10.1360/csb1998-43-8-883 [34] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2002. Where was South China Located in the Reconstruction of Rodinia? Earth Science Frontiers, 9(4): 249-256(in Chinese with English abstract). http://www.researchgate.net/publication/284875270_where_was_south_china_located_in_the_reconstruction_of_rodinia [35] Yin, J.Z., Chen, Y.C., Zhou, J.X., 1996. The Geological and Geochemical Characteristics of the Host Rocks Dashuigou Independent Tellurium Ore Deposit in Shimian County, Sichuan Province. Journal of Changchun University of Earth Sciences, 26(3): 322-326(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ603.013.htm [36] Yin, J.Z., Chen, Y.C., Zhou, J.X., et al., 1995. The First and Independent Tellurium Deposit Metallogenetic Ages. Chinese Science Bulletin, 4(8): 766-767 (in Chinese). [37] Yu, A.G., Chen, Y.L., Yang, M.W., et al., 1998. Discovery of Micropaleontological Fossils in the Metamorphic Rocks in Dashuigou, Shimian. Acta Geologic Shichuan, 16(1): 6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB804.001.htm [38] Yu, A.G., Guo, J.Q., 1998. Tectonic Framework on the Western Margin of the Yangtze Platform. Regional Geology of China, 18(4): 248-250(in Chinese with English abstract). http://www.researchgate.net/publication/313564751_Tectonic_framework_on_the_western_margin_of_the_Yangtze_Platform [39] Zhang, Z.C., 2009. A Discussion on Some Important Problems Concerning the Emeishan Large Igneous Province. Geology in China, 36(3): 634-646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200903012.htm [40] Zhou, J.X., Chen, Z.Y., 2007. Studying of Zircon Cathodoluminescence by Electron Probe. Press of University of Electronic Science and Technology of China, Chengdu, 34-123(in Chinese). [41] Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth Planet Science Letter, 196(1-2): 51-67. doi:10.1016 /S0012-821X(01)00595-7 [42] 陈毓川, 毛景文, 骆耀南, 等, 1996. 四川大水沟碲(金)矿床地质和地球化学. 北京: 原子能出版社, 23-28. [43] 杜利林, 耿元生, 杨崇辉, 等, 2005. 扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄. 地质学报, 79(6): 805-812. doi: 10.3321/j.issn:0001-5717.2005.06.009 [44] 郭建强, 游再平, 王大可, 1997. 扬子陆块西缘石棉大水沟岩片变形变质特征. 四川地质学报, (3): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199703001.htm [45] 侯立玮, 1999. 扬子克拉通西缘弯状变形变质体的类型与成因. 四川地质学报, 16(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB601.001.htm [46] 胡健民, 孟庆任, 石玉若, 等2005. 松潘甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 867-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503027.htm [47] 李献华, 周汉文, 李正祥, 等, 2002. 川西新元古代双峰式火山岩成因的微量元素和Sm和Nd同位素制约及其大地构造意义. 地质科学, 37(3): 264-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203001.htm [48] 林广春, 2010. 川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义. 地球科学——中国地质大学学报, 35(4): 612-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004014.htm [49] 林广春, 李献华, 李武显, 2006. 川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学: 岩石成因与构造意义. 中国科学(D辑): 地球科学, 36(7): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607003.htm [50] 林清茶, 夏斌, 张玉泉, 2006. 川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年. 地质通报, 25(3): 588-597. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200603009.htm [51] 刘福来, 徐志琴, 宋彪, 2003. 苏鲁地体超高压和退变质时代的厘定: 来自片麻岩锆石微区SHRIMP U-Pb定年的证据. 地质学报, 77(2): 229-238. doi: 10.3321/j.issn:0001-5717.2003.02.011 [52] 刘家铎, 张成江, 刘显凡等, 2004. 扬子地台西南缘成矿规律与找矿方向. 北京: 地质出版社, 178-189. [53] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶、制作、年龄测定及有关现象讨论. 地质评论, 48(增刊): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [54] 王康明, 阚泽忠, 2001. 扬子地台西缘对Rodinia形成期地质影响. 华南地质与矿产, 4: 22-27. doi: 10.3969/j.issn.1007-3701.2001.04.007 [55] 王汝成, 沈渭洲, 徐士进, 等, 1995. 四川石棉大水沟碲矿床的同位素地质研究. 南京大学学报自然科学版, 31(4): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ504.013.htm [56] 王仁民, 贺高平, 陈珍珍, 等, 1987. 变质岩原岩图解判别法. 北京: 地质出版社, 10-67. [57] 吴根耀, 1990. 川西康定-泸定地区前寒武纪大地构造演化——一个地壳多次活化"动""定"递进的实例. 大地构造与成矿学, 44(3): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199003006.htm [58] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [59] 夏斌, 刘红英, 张玉泉, 2004. 攀西古裂谷钠质碱性岩锆石SHRIMP U-Pb年龄及地质意义—以红格、白马和鸡街岩体为例. 大地构造与成矿学, 2(6): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200402005.htm [60] 徐士进, 沈渭洲, 王汝成, 等, 1998. 大水沟碲矿含矿斜长角闪岩的锆石U-Pb定年. 科学通报: 4 3(8): 883-885. doi: 10.3321/j.issn:0023-074X.1998.08.023 [61] 颜丹平, 周美夫, 宋鸿林等, 2002. 华南在Rodinia古陆中位置的讨论—扬子地块西缘变质一岩浆杂岩证据及其与Seychelles地块的对比. 地学前缘, 9(4): 249-256. doi: 10.3321/j.issn:1005-2321.2002.04.004 [62] 银剑钊, 陈毓川, 周建雄, 1996. 世界首例独立碲矿床赋矿围岩的地质地球化学研究. 长春地质学院学报, 26(3): 322-326. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ603.013.htm [63] 银剑钊, 陈毓川, 周建雄, 等, 1995. 世界首例独立碲矿的成矿年龄, 科学通报, 4(8): 766-767. doi: 10.3321/j.issn:0023-074X.1995.08.028 [64] 喻安光, 陈玉禄, 杨明文等, 1998. 石棉大水沟变质岩系中微古植物化石的发现. 四川地质学报, 18(4): 248-250. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB804.001.htm [65] 喻安光, 郭建强, 1998. 扬子地台西缘构造格局. 中国区域地质, 17(3): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD803.005.htm [66] 张招崇, 2009. 关于峨眉山大火成岩省一些重要问题的探讨. 中国地质, 36(3): 634-644. doi: 10.3969/j.issn.1000-3657.2009.03.010 [67] 周建雄, 陈振宇, 2007. 电子探针下锆石阴极发光的研究. 成都: 电子科技大学出版社, 34-123.