Experiment of Fracture Grouting in Alluvium with Physical Model
-
摘要: 河流堤坝多位于深厚冲积层上, 而冲积层含砂石量大等特点对堤坝防渗、稳定性是不利的, 对堤坝进行注浆加固是必要的, 而研究浆液在冲积层中的分布扩散规律是首要任务.基于传统注浆理论, 通过现场注浆模型试验, 得出浆液在冲积层中的分布扩散规律、浆液劈裂机理、土的加固特性以及注浆加固过程中应注意的问题.指出浆液在冲积层中一般先沿土石分界面进行充填、劈裂, 并以水平向劈裂为主.在注浆过程中宜采用多次重复注浆方式以达到提高加固效果的目的.对冲积层中堤坝注浆加固有一定的参考与指导作用.Abstract: Dams are mainly located at the deep alluvium, where large amount of sand and gravel is adverse to prevention of seepage and maintenance of stability of the dams. Therefore it is necessary to reinforce the dams by grouting, and the primary task is to do research on the laws of diffusion and distribution of the slurry in the alluvial layer. The present study is based on the traditional theory of grouting and the laws of diffusion and distribution of the slurry, the slurry splitting mechanism, the characteristics of soil reinforcement are obtained. In addition, it is found by on-site grouting model tests that the slurry is generally filling and splitting along the interface between the earth and rock, and mainly splitting in the horizontal direction in grouting reinforcement process. To improve the reinforcement effect, the repeated injection should be adopted in grouting process. The study results will facilitate future dam grouting reinforcement projects in alluvial layer.
-
表 1 填料物理力学性质参数
Table 1. Physical mechanical parameters of fillers
项目指标 密度(g·cm-3) 含水量(%) 孔隙比 C(kPa) Φ(°) 压缩系数 压缩模量(MPa) 注浆前 1.99 12.7 0.380 42.5 35 0.20 6.65 注浆后上层土 2.10 10.4 0.325 64.4 35 0.12 10.96 注浆后下层土 2.10 12.5 0.350 57.3 33 0.13 10.28 注:压缩模量为100~200 kPa压力作用下所对应值. -
[1] Chen, H.J., 2010. Civil Engineering Geology. China Building Materials Press, Beijing (in Chinese). [2] Chen, X.Z., 2004. Soil Mechanics and Geotechnical Engineering. Tsinghua University Press, Beijing (in Chinese). [3] Ge, J.L., Lu, S.L., 1997. Study on Grouting Simulation Experiment and Its Application. Chinese Journal of Geotechnical Engineering, 19(3): 28-33 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=2804514 [4] Huang, S.L., 2007. Research of Grouting Consolidation Technology in Sandy Gravel Ground by Undercutting under Shallow Cover Tunnel near Bridge Pile (Dissertation). Beijing Jiaotong University, Beijing (in Chinese with English abstract). [5] Jiang, S., Wang, H., Weimer, P., 2008. Sequence Stratigraphy Characteristics and Sedimentary Elements in Deepwater. Earth Science—Journal of China University of Geosciences, 33(6): 825-833 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.099 [6] Li, G.C., Si, F.A., Bai, X.M., 2005. China Levee Engineering Geology. China Water Power Press, Beijing (in Chinese with English abstract). [7] Li, L., Zhao, L.H., Zou, J.F., et al., 2009. Experimental Research on Horizontal Flexible Reinforced Grouting with Physical Model. Rock and Soil Mechanics, 30(7): 2081-2086 (in Chinese with English abstract). http://www.researchgate.net/publication/293150842_Experimental_research_on_horizontal_flexible_reinforced_grouting_with_physical_model [8] Luo, H., 2010. Studies on Grouting Theories and It's Applications in Highway Engineering (Dissertation). Central South University, Changsha (in Chinese with English abstract). [9] The Research Group of Grouting Theories and Case Histories, 2001. The Grouting Theories and Case Histories. Science Press, Beijing (in Chinese). [10] Wang, J., Du, J.H., Chen, S.Y., 1997. Developing and Prospects of the Grouting Technology. Journal of Shenyang Architecural and Civil Engineering Institute, 13(1): 60-65 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYJZ701.014.htm [11] Xu, X.F., 2010. The Anchor Pipe Grouting Test and Research of Side Slope Bedded Rock. Shanxi Architecture, 36(14): 104-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZSX201014062.htm [12] Yang, P., Tang, Y.Q., Peng, Z.B., et al., 2006. Study on Grouting Simulating Experiment in Sandy Gravels. Chinese Journal of Geotechnical Engineering, 28(2): 2134-2138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200612015.htm [13] Zhang, H.M., 2011. Research on Mechanics Characteristics and Mechanism of Deformation and Failure of Unsaturated Soil-Rock Mixture (Dissertation). Changjiang River Science Research Institute, Wuhan (in Chinese with English abstract). [14] Zhang, Z.M., Zou, J., He, J.Y., et al., 2009. Laboratory Tests on Compaction Grouting and Fracture Grouting of Clay. Chinese Journal of Geotechnical Engineering, 31(12): 1818-1824 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200912005.htm [15] Zhao, L.H., Luo, H., Li, L., et al., 2010. Experimental Research on Implementing Method of Backfill of Abutment Back with Horizontal Flexible-Reinforced Grouting Technology. Rock and Soil Mechanics, 31(1): 199-205 (in Chinese with English abstract). http://www.researchgate.net/publication/290297967_Experimental_research_on_implementing_method_of_backfill_of_abutment_back_with_horizontal_flexible-reinforced_grouting_technology [16] Zou, J.F., Li, L., Yang, X.L., et al., 2006. Energy Dissipation Analysis for Crack Grouting. China Railway Science, 27(2): 52-55 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGTK200602010.htm [17] Zou, J.F., Li, L., Yang, X.L., et al., 2006. Method of Energy Analysis for Compaction Grouting. Rock and Soil Mechanics, 27(3): 475-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200603029.htm [18] 陈洪江, 2010. 土木工程地质. 北京: 中国建材工业出版社. [19] 陈希哲, 2004. 土力学地基基础. 北京: 清华大学出版社. [20] 葛家良, 陆士良, 1997. 注浆模拟试验及其应用研究. 岩土工程学报, 19(3): 28-33. doi: 10.3321/j.issn:1000-4548.1997.03.005 [21] 黄树炉, 2007. 砂卵石地层浅埋暗挖隧道近桥桩施工注浆加固技术研究(硕士学位论文). 北京: 北京交通大学. [22] 蒋恕, 王华, Paul Weimer, 2008. 深水沉积层序特点及构成要素. 地球科学——中国地质大学学报, 33(6): 825-833. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806011.htm [23] 李广诚, 司富安, 白晓民, 等, 2005. 中国堤防工程地质. 北京: 中国水利水电出版社. [24] 李亮, 赵炼恒, 邹金锋, 等, 2009. 柔性加筋注浆现场模型试验研究. 岩土力学, 30(7): 2081-2086. doi: 10.3969/j.issn.1000-7598.2009.07.036 [25] 罗恒, 2010. 注浆理论研究及其在公路工程中的应用(博士学位论文). 长沙: 中南大学. [26] 岩土注浆理论与工程实例协作组, 2001, 编著. 岩土注浆理论与工程实例. 北京: 科学出版社. [27] 王杰, 杜嘉鸿, 陈守庸, 1997. 注浆技术的发展与展望. 沈阳建筑工程学院学报, 13(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ701.014.htm [28] 徐晓峰, 2010. 边坡层状岩体中的锚管注浆试验及研究. 山西建筑, 36(14): 104-106. doi: 10.3969/j.issn.1009-6825.2010.14.063 [29] 杨坪, 唐益群, 彭振斌, 等, 2006. 砂卵(砾)石层中注浆模拟试验研究. 岩土工程学报, 28(2): 2134-2138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200612015.htm [30] 张宏明, 2011. 非饱和土石混合体的力学特性与变形破坏机制研究(博士学位论文). 武汉: 长江科学院. [31] 张忠苗, 邹健, 贺静漪, 等, 2009. 黏土中压密注浆及劈裂注浆室内模拟试验分析. 岩土工程学报, 31(12): 1818-1824. doi: 10.3321/j.issn:1000-4548.2009.12.003 [32] 赵炼恒, 罗恒, 李亮, 等, 2010. 土石混填料台背回填柔性加筋注浆技术加固试验研究. 岩土力学, 31(1): 199-205. doi: 10.3969/j.issn.1000-7598.2010.01.034 [33] 邹金锋, 李亮, 杨小礼, 等, 2006a. 劈裂注浆能耗分析. 中国铁道科学, 27(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200602010.htm [34] 邹金锋, 李亮, 杨小礼, 等, 2006b. 压密注浆的能量分析方法. 岩土力学, 27(3): 475-478. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200603029.htm