Sources and Genesis of Subsurface Brine in Sua Pan, Botswana
-
摘要: Sua盐湖是博茨瓦纳面积最大的盐湖之一, 是南半球重要的天然碱资源.为进一步揭示该盐湖的成因, 对盐湖区地下水、地表水以及晒盐场盐结晶进行了常规阴阳离子含量、D、18O和37Cl同位素组成及地下水14C年龄分析.水化学结果显示Sua盐湖的地下卤水具有富Na和K, 贫Ca和Mg的特征.氢氧同位素关系和37Cl结果显示, 附近河流地表水与Sua盐湖地下卤水具有密切的水力联系, 而地下水对其补给作用较弱(37Cl差异为0.04‰~0.06‰).TDS-γNa/γCl关系揭示Sua盐湖地下卤水受到盐岩地层溶滤作用的影响(γNa/γCl≈1), 而14C年龄(距今约2万年)表明古气候的波动变化是其重要影响因素.基于以上认识, 运用PHREEQC软件对Sua盐湖地下卤水进行反向地球化学模拟, 结果表明地表水的强烈蒸发浓缩以及附近地下水对盐岩地层的溶滤是控制Sua盐湖卤水形成的主要因素.Abstract: The salt lake of Sua Pan, one of the largest salt lakes in Botswana, is important resources of natural alkali. To identify the sources and genesis of subsurface brine in this salt lake, groundwater and surface water near this lake, in addition to subsurface brine water in the lake and salt crystals from solar salt field were collected and determined. The contents of major cation and anion, the isotope compositions of D, 18O and 37Cl, and the 14C age of groundwater were calculated. It is found that the subsurface brine is characterized by enriched Na and K, and depleted Ca and Mg. Results of D, 18O and 37Cl show that surface water is closely connected with subsurface brine in Sua Pan, while the role of groundwater recharge on it is weak (the difference of 37Cl is 0.04‰-0.06‰). Relationships of TDS-γNa/γCl indicate that leaching of halite affects the formation of this subsurface brine (γNa/γCl≈1), and the age of 14C (about 20 000 years ago)indicates that the fluctuation of ancient climate is considered to be an important factor of the formation of Sua Pan. Based on the above knowledge, inverse simulation of subsurface brine in Sua Pan is modeled by PHREEQC software, which further verifies that salt lake of Sua Pan is mainly the result of strong evaporation and concentration of surface water and halite leaching by groundwater.
-
Key words:
- subsurface brine /
- hydrogeochemical characteristics /
- isotopes /
- inverse simulation /
- geochemistry
-
表 1 Sua盐湖水样采集信息
Table 1. Water samples collected from Sua pan
样品编号 SW01 SW02 GW03 GW04 BW06 SW07 经纬度 26°11.224′E 26°22.055′E 26°27.126′E 26°28.373′E 25°57.871′E 26°14.439′E 20°12.798′S 20°05.645′S 20°30.683′S 20°30.517′S 20°27.852′S 20°17.889′S 类型 地表水 地表水 地下水 地下水 地下卤水 地表水 地点 Nata河 Nata河 Dukwi地区 Dukwi地区 Sua盐湖 Nata国家公园 采样深度 0~30 cm 0~30 cm >36.93 m >34.50 m 约20 m 0~30 cm 表 2 水样的水化学分析结果
Table 2. Results of hydrochemical analysis of water samples
指标 SW01 SW02 GW03 GW04 BW06 SW07 EC(μs/cm) 1 024.0 138.3 1 556.0 1 562.0 183 300.0 4 333.0 pH 8.80 8.89 7.16 7.08 9.50 8.83 温度(℃) 32.9 26.4 28.8 27.8 29.0 30.3 HCO3-(mg/L) 130.43 85.81 583.50 518.97 4 118.85 364.52 CO32-(mg/L) 49.52 0.00 0.00 0.00 15 445.06 210.80 Cl-(mg/L) 207.44 3.20 216.75 252.79 41 640.00 1 076.08 SO42-(mg/L) 20.58 0.90 93.22 95.40 12 480.00 97.90 K+(mg/L) 14.91 6.33 4.81 4.14 2 108.90 49.23 Ca2+(mg/L) 16.81 16.26 23.08 16.34 7.30 10.64 Mg2+(mg/L) 3.05 2.78 35.22 30.94 3.50 0.78 Na+(mg/L) 185.30 5.43 269.76 296.44 46 278.01 1 028.80 TDS(g/L) 0.630 0.121 1.229 1.218 112.655 2.841 阴阳离子平衡(%) 0.981 4.486 1.548 0.017 4.371 4.808 库尔洛夫式 Cl·HCO3-Na HCO3-Ca·Na HCO3·Cl-Na HCO3·Cl-Na Na-Cl Na-Cl 表 3 样品的37Cl测试结果
Table 3. δ37Cl values of water and salt crystals samples from Sua Pan
样品 δ 37Cl(‰) d值(‰) GW03 0.22 0.06 GW04 0.24 0.04 BW06 0.18 0.02 盐结晶 0.29 0.07 表 4 Sua盐湖卤水的14C年龄
Table 4. 14C age of brine water from Sua Pan
编号 现代碳百分数(%) 14C年龄(ka) 校正后年龄(ka) BW06 13.464 16.580±0.27 21.459 表 5 Sua盐湖卤水演化的地球化学模型(单位:mol/L)
Table 5. Geochemistry models for the evolution of brines in Sua pan
起点 终点 H2O 岩盐 方解石 钾长石 石膏 白云石 钠长石 CO2 SW01 BW06 -1.261e+4 1.538e-1 -1.891e-1 -3.514e-2 1.220e-1 -2.844e-2 3.514e-2 3.779e-1 SW02 BW06 -7.794e+4 1.418 -6.526e-1 -1.756e-1 1.578e-1 -1.605e-1 1.756e-1 -6.335e-1 SW07 BW06 -2.567e+3 - -1.320e-1 -7.751e-3 1.210e-1 -1.356e-3 7.751e-3 2.735e-1 BW06 -2.578e+3 - -1.302e-1 - 1.191e-1 -1.362e-3 - - GW03 BW06 -2.869e+3 1.271 -7.363e-2 4.542e-2 1.197e-1 -7.626e-2 -4.542e-2 -8.165e-2 GW04 BW06 -2.720e+3 1.242 -7.786e-2 4.661e-2 1.212e-1 -6.354e-2 -4.661e-2 -7.031e-2 注:负值表示从水溶液中迁移出来的摩尔量;正值表示进入水溶液的摩尔量. -
[1] Burrough, S.L., Thomas, D.S.G., Bailey, R.M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene Record of the Palaeolake Makgadikgadi System. Quaternary Science Reviews, 28(15-16): 1392-1411. doi: 10.1016/j.quascirev.2009.02.007 [2] Cao, B.X., 1995. Geomorphology and Quaternary Geology. China University of Geosciences Press, Wuhan (in Chinese). [3] Clayton, R.N., Friedman, I., Graf, D.L. et al., 1966. The Origin of Saline Formation Waters 1. Isotopic Composition. Journal of Geophysical Research-Atmospheres, 71 (16): 3869-3882. doi: 10.1029/JZ071i016p03869 [4] Eckardt, F.D., Bryant, R.G., McCulloch, G., et al., 2008. The Hydrochemistry of a Semi-arid Pan Basin Case Study: Sua Pan, Makgadikgadi, Botswan. Applied Geochemistry, 23 (6): 1563-1580. doi: 10.1016/j.apgeochem.2007.12.033 [5] Fan, Q.S., Ma, H.Z., Tan, H.B., et al., 2007. Characteristics and Origin of Brines in Western Qaidam Basin. Geochimica, 36(6): 601-611(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqhx200706008 [6] Holmgren, K., Lee-Thorp, J.A., Cooper, G.R.J., et al., 2003. Persistent Millennial-Scale Climatic Variability over the Past 25 000 Years in Southern Africa. Quaternary Science Reviews, 22(21-22): 2311-2326. doi: 10.1016/S0277-3791(03)00204-X [7] Liu, H.Y., 2002. Quaternary Ecology and Global Change. Science Press, Beijing (in Chinese). [8] Liu, W.G., Xiao, Y.K., Sun, D.P., et al., 1995. Characteristics and Significance of Chlorine Isotope of Brine and Deposits in the Mahai Salt Lakes. Journal of Salt Lake Science, 3(2): 29-33(in Chinese with English abstract). http://www.researchgate.net/publication/285751263_Characteristics_and_significance_of_chlorine_isotope_of_brine_and_deposits_in_the_Mahai_salt_lakes [9] Liu, W.G., Xiao, Y.K., Sun, D.P., et al., 1996. Chlorine Isotopic Composition in Qaidam Basin. Geochimica, 25(3): 296-303 (in Chinese with English abstract). [10] McCulloch, G.P., Irvine, K., Eckardt, F., et al., 2008. Hydrochemical Fluctuations and Crustacean Community Composition in an Ephemeral Saline Lake (Sua Pan, Makgadikgadi Botswana). Hydrobiologia, 596(1): 31-46. doi: 10.1007/s10750-007-9055-8 [11] Ringrose, S., Huntsman-Mapila, P., Kampunzu, A.B., et al., 2005. Sedimentological and Geochemical Evidence for Palaeo-Environmental Change in the Makgadikgadi subbasin, in Relation to the MOZ Rift Depression, Botswana. Palaeo, 217(3-4): 265-287. doi: 10.1016/j.palaeo.2004.11.024 [12] Servant, M., Maley, J., Turcq, B., et al., 1993. Tropical Forest Changes during the Late Quaternary in African and South American Lowlands. Global and Planetary Change, 7(1-3): 25-40. http://www.researchgate.net/profile/Jean_Maley2/publication/32975443_Tropical_forest_changes_during_the_Late_Quaternary_in_African_and_South_American_lowlands/links/0deec521daf6da3824000000.pdf [13] Shaw, P.A., Cooke, H.J., 1986. Geomorphic Evidence for the Late Quaternary Palaeoclimates of the Middle Kalahari of Northern Botswana. Catena, 13(4): 349-359. doi: 10.1016/0341-8162(86)90009-3 [14] Shaw, P.A., Thomas, D.S., G., Nash, D.J., 1992. Late Quaternary Fluvial Activity in the Dry Valleys (mekgacha) of the Middle and Southern Kalahari, Southern Africa. Journal of Quaternary Science, 7(4): 273-281. doi: 10.1002/jqs.3390070402 [15] Taylor, H.P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69 (6): 843-883. doi: 10.2113/gsecongeo.69.6.843 [16] Thomas, D.S.G., Shaw, P.A., 1991. The Kalahari Environment. Cambridge University Press, Cambridge. [17] Wan, J.W., Liu, C.F., Chao, N.Y., et al., 2003. Isotope Hydrology Theory and Practice. China University of Geosciences Press, Wuhan (in Chinese). [18] Wang, M.L., Yang, Z.C., Liu, C.L., et al., 1996. The Northern Qaidam Basin Salt Lake Potash Deposit and Its Development Prospects. Geological Publishing House, Beijing (in Chinese). [19] Wang, Z.Y., Meng, G.L., Wang, S.Q., 2003. Geochemistry Modeling of Quaternary Subsurface Brines in South Coast of the Laizhou Bay, the Bohai Sea—Taking Brines from Core-aoli501 in Changyi Area as an Example. Marine Geology & Quaternary Geology, 23(1): 49-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200301008.htm [20] Xiao, Y.K., Jin, L., Liu, W.G., et al., 1994. Chlorine Isotope Composition in Big Tsaidam Lake. Chinese Science Bulletin, 39(14): 1319-1322(in Chinese). doi: 10.1360/csb1994-39-14-1319 [21] Yang, L., Liu, S.F., Wang, J.S., 1998. General Geology Brief Tutorial. China University of Geosciences Press, Wuhan (in Chinese). [22] Zhang, C.D., 2006. Present Situation of Trona Development in Botswana. Soda Industry, (4): 3-6(in Chinese). [23] Zhang, Z.G., 2009. Unconfined Brine Hydrochemistry Characteristic and Brine Cause Analysis of East Section of Qarhan Salt Lake. Journal of Salt Lake Research, 17(1): 19-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YHYJ200901006.htm [24] Zheng, M.P., 2006. Salinology: Research and Prospects. Geological Review, 52(6): 737-746(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=23387131 [25] Zheng, Y.H., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing (in Chinese). [26] 曹博勋, 1995. 地貌学及第四纪地质学. 武汉: 中国地质大学出版社. [27] 樊启顺, 马海州, 谭红兵, 等, 2007. 柴达木盆地西部卤水特征及成因探讨. 地球化学, 36 (6): 601-611. doi: 10.3321/j.issn:0379-1726.2007.06.008 [28] 刘鸿雁, 2002. 第四纪生态学与全球变化. 北京: 科技出版社. [29] 刘卫国, 肖应凯, 孙大鹏, 等, 1995. 马海盐湖区卤水和盐类矿物的氯同位素特征及意义. 盐湖研究, 3(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ502.004.htm [30] 刘卫国, 肖应凯, 孙大鹏, 等, 1996. 柴达木盆地氯同位素组成特征. 地球化学, (3): 296-303. doi: 10.3321/j.issn:0379-1726.1996.03.011 [31] 万军伟, 刘存富, 晁念英, 等, 2003. 同位素水文学理论与实践. 武汉: 中国地质大学出版社. [32] 王弭力, 杨智琛, 刘成林, 等, 1996. 柴达木盆地北部盐湖钾矿床及其开发前景. 北京: 地质出版社. [33] 王珍岩, 孟广兰, 王少青, 2003. 渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟. 海洋地质与第四纪地质. 23(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200301008.htm [34] 肖应凯, 金琳, 刘卫国, 等, 1994. 大柴达木湖的氯同位素组成. 科学通报, 39(14): 1319-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199414021.htm [35] 杨伦, 刘少峰, 王家生, 1998. 普通地质学简明教程. 武汉: 中国地质大学出版社. [36] 张晨鼎, 2006. 博茨瓦纳天然碱的开发现状. 纯碱工业, (4): 3-6. doi: 10.3969/j.issn.1005-8370.2006.04.001 [37] 张兆广, 2009. 察尔汗盐湖东段潜卤水水文地球化学特征及卤水成因分析. 盐湖研究, 17 (1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200901006.htm [38] 郑绵平, 2006. 盐湖学的研究与展望. 地质论评, 52 (6): 737-746. doi: 10.3321/j.issn:0371-5736.2006.06.003 [39] 郑永红, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社.