Mesozoic and Cenozoic Thermal History and Source Rock Thermal Evolution History in the Chagan Sag, Inner Mongolia
-
摘要: 查干凹陷是内蒙古银-额盆地最具勘探潜力的凹陷, 为了揭示查干凹陷中、新生代热史及烃源岩热演化历史, 首先利用9口井的镜质体反射率数据恢复了查干凹陷中、新生代热史, 结果显示查干凹陷在早白垩世巴音戈壁组沉积开始至银根组沉积末期, 地温梯度逐渐增加, 且到银根组沉积末期达到最大, 为50~58 ℃/km; 自晚白垩世乌兰苏海组沉积开始至今, 地温梯度逐渐下降, 现今地温梯度仅为31~34 ℃/km.再以热史为基础, 结合沉积和构造发育史及烃源岩地球化学资料, 模拟了查干凹陷9口井3套烃源岩的成熟度演化历史, 模拟结果显示查干凹陷烃源岩成熟度演化受古地温控制, 3套烃源岩成熟度都在早白垩世晚期达到最大.Abstract: The Chagan sag has the greatest potential for oil and gas exploration among other sags in the Yin'gen-Ejinaqi basin. To reveal the Mesozoic and Cenozoic thermal history and source rock thermal evolution history in the Chagan sag, the thermal history was modeled on basis of vitrinite reflectance data of 9 wells. The modeled results show the thermal gradients increased gradually from the Early Cretaceous Bayin'gebi Formation to the end of the Yin'gen Formation, and the thermal gradients reached maximum values(50-58 ℃/km) at the end of the Yingen Formation.Then the thermal gradients decreased gradually from the Late Cretaceous Wulansuhai Formation to the present day, and the thermal gradients is only 31-34 ℃/km in the present day. Meanwhile, based on the above thermal gradient data, with combination of the depositional and tectonic development history and geochemical parameters of source rocks, maturation histories of 3 sets of source rocks of 9 wells were modeled. The modeled results show the maturation histories were controlled by the palaeogeothermal, and the maturation of 3 sets of source rocks reached maximum values in the late period of the Early Cretaceous.
-
Key words:
- Yin'gen-Ejinaqi basin /
- Chagan sag /
- thermal history /
- maturation history /
- sedimendation /
- petroleum geology
-
图 2 查干凹陷镜质体反射率数据与深度的关系(井位见图 1)
虚线范围内的数据受苏红图组火山活动的影响, 且影响程度不一致, 导致同一深度镜质体反射率相差较大, 不能用于热史模拟
Fig. 2. Vitrinite reflectance data versus depth in the Chagan sag
-
[1] Chen, S.T., Liu, Z.J., Yu, H.J., 2004. Researches of Thermal Evolution History in Hailaer Basin. Journal of Jilin University (Earth Science Edition), 34(1): 85-88(in Chinese with English abstract). [2] Cui, J.P., Ren, Z.L., 2011. Characteristics of Present Geothermal Field of the Wuerxun Depression in Hailaer Basin, Inner Mongolia. Geosciences, 25(3): 589-593 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201103022.htm [3] Cui, J.P., Ren, Z.L., Xiao, H., et al., 2007. Study on Temperature Distribution and Controlling Factors in the Hailaer Basin. Chinese Journal of Geology, 42(4): 656-665(in Chinese with English abstract). http://www.researchgate.net/publication/283844254_Study_on_temperature_distribution_and_controlling_factors_in_the_hailar_basin [4] Deng, Y.X., Zuo, Y.H., Hao, Q.Q., et al., 2012. Present Geothermal Fields of Chagan Sag and Its Oil and Gas Geological Significance. Fault-Block Oil & Gas Field, 19(3): 248-288(in Chinese with abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201203005.htm [5] Liu, C.X., Zhang, X.H., 2011. Relationship between Paleogeotherm and Hydrocarbon Generation in the Baiyinchagan Depression, Erlian Basin. Journal of Shandong University of Science and Technology (Natural Science), 23(3): 12-20(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDKY201103004.htm [6] Liu, Y.H., 1992. Thermal Evolution and the Character of Oil and Gas Generation in Hailaer Basin. Petroleum Geology & Oilfield Development in Daqing, 11(4): 7-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK199204001.htm [7] Mckenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. doi: 10.1016/0012-821x(78)90071-7 [8] Qiu, N.S., Hu, S.B., He, L.J., 2004. The Theory and Application of Thermal Regime Study of Sedimentary Basin. Petroleum Industry Press, Beijing(in Chinese). [9] Qiu, N.S., Su, X.G., Li, Z.Y., et al., 2006. The Cenozoic Tectono-Thermal Evolution of Jiyang Depression, Bohai Bay Basin, East China. Chinese Journal of Geophysics, 49(4): 1127-1135(in Chinese with English abstract). doi: 10.1002/cjg2.923/full [10] Qiu, N.S., Wang, J.Y., 1998. The Use of Free Radicals of Organic Matter to Determine Paleogeo-thermal Gradient. Organic Geochemistry, 28(1-2): 77-86. doi: 10.1016/S0146-6380(97)00111-3 [11] Ren, Z.L., Liu, C.Y., Zhang, X.H., et al., 2000a. Recovery and Comparative Research of Thermal History on Jiuquan Basin Group. Chinese Journal of Geophysics, 43(5): 635-645(in Chinese with English abstract). http://www.researchgate.net/publication/297792486_Recovery_and_comparative_research_of_thermal_history_on_Jiuquan_basin_group [12] Ren, Z.L., Liu, C.Y., Zhang, X.H., et al., 2000b. Research on the Relations between Geothermal History and Oil-Gas Generation in Jiudong Basin. Acta Sedimentological Sinica, 18(4): 619-623(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200004024.htm [13] Ren, Z.L., Zhang, X.H., Liu, C.Y., et al., 1995. Determination of Oil Source Rock Palaeotemperature Ascertains the Direction of Oil-Gas Exploration in Huahai-Jinta Basin. Chinese Science Bulletin, 40(10): 921-923(in Chinese). doi: 10.1360/csb1995-40-10-921 [14] Royden, L., Keen, C.E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth Planet. Science Letters, 51(2): 343-361. doi: 10.1016/0012-821X(80)90216-2 [15] Sclater, J.G., Christie, P.A.F., 1980. Continental Stretching: An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research, 85(B7): 3711-3739. doi: 10.1029/JB085iB07p03711 [16] Sleep, N.H., Snell, N.S., 1976. Thermal Contraction and Flexure of Mid-Continent and Atlantic Marginal Basins. Geophysical Journal International, 45(1): 125-154. doi: 10.1111/j.1365-246X.1976.tb00317.x [17] Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559-1570. http://www.researchgate.net/publication/255005110_Evaluation_of_a_simple_model_of_vitrinite_reflectance_based_on_Chemical_kinetics [18] Tissot, B.P., Pelet, R., Ungerer, P.H., 1987. Thermal History of Sedimentary Basins: Maturation Indices and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71(12): 1445-1466. http://ci.nii.ac.jp/naid/80003765769 [19] Wang, S.C., Yuan, W.M., Wang, L.F., et al., 1999. Thermal Evolution and Timing of Hydrogen Generation in the Huahai Basin: Evidence from Apatite Fission Track Data. Acta Geoscientia Sinica, 20(4): 428-432(in Chinese with English abstract). http://www.oalib.com/paper/1558602 [20] Wang, Z.L., Li, B.X., 2007. Geothermal Field Characteristics of East Jiuquan Basin and Feasibility Study of Geothermal Development in Suzhou. Acta Geologica Gansu, 16(1): 61-66(in Chinese with English abstract). http://www.researchgate.net/publication/285200951_Geothermal_field_characteristics_of_east_Jiuquan_basin_and_feasibility_study_of_geothermal_development_in_Suzhou [21] Wei, P.S., Zhang, H.Q., Chen, Q.L., 2006. Petroleum Geological Characteristics and Exploration Prospects in the Yin'gen-Ejinaqi Basin. Petroleum Industry Press, Beijing, 50-51(in Chinese). [22] Wood, D.A., 1988. Relationship between Thermal Maturity Indices Calculated Using Arrehenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72(2): 115-134. doi: 10.1306/703c8263-1707-11d7-8645000102c1865d [23] Ye, J.R., Yang, X.H., 2003. Characteristics of the Temperature and Pressure Fields in Chagan Sag of Yingen-Ejina Banner Basin and Their Petroleum Geological Significance. Natural Gas Industry, 23(2): 15-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG200302004.htm [24] Zhao, L., Jia, R.F., Qin, J.Z., et al., 1998. A Study on Thermal Evolution of Jurassic System, Erlian Basin. Geochimica, 27(6): 592-598(in Chinese with English abstract). [25] Zuo, Y.H., Qiu, N.S., Deng, Y.X., et al., 2013. Terrestrial Heat Flow in the Chagan, Inner Mongolia. Chinese Journal of Geophysics (in press) (in Chinese with English abstract). [26] Zuo, Y.H., Qiu, N.S., Zhang, Y., et al., 2011. Geothermal Regime and Hydrocarbon Kitchen Evolution of the Offshore Bohai Bay Basin, North China. AAPG Bulletin, 95(5): 749-769. doi: 10.1306/09271010079 [27] 陈守田, 刘招君, 于洪金, 2004. 海拉尔盆地热演化史研究. 吉林大学学报(地球科学版), 34(1): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200401015.htm [28] 崔军平, 任战利, 2011. 内蒙古海拉尔盆地乌尔逊凹陷现今地温场特征. 现代地质, 25(3): 589-593. doi: 10.3969/j.issn.1000-8527.2011.03.022 [29] 崔军平, 任战利, 肖晖, 等, 2007. 海拉尔盆地地温分布及控制因素研究. 地质科学, 42(4): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704004.htm [30] 邓已寻, 左银辉, 郝情情, 等, 2012. 查干凹陷现今地温场研究及其油气地质意义. 断块油气田, 19(3): 248-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201203005.htm [31] 刘春晓, 张晓花, 2011. 二连盆地白音查干凹陷古地温与油气生成的关系. 山东科技大学学报(自然科学版), 23(3): 12-20. doi: 10.3969/j.issn.1672-3767.2011.03.003 [32] 刘银河, 1992. 海拉尔盆地地热演化史及油气生成特征. 大庆石油地质与开发, 11(4): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK199204001.htm [33] 邱楠生, 胡圣标, 何丽娟, 2004. 沉积盆地热体制研究的理论和应用. 北京: 石油工业出版社. [34] 邱楠生, 苏向光, 李兆影, 等, 2006. 济阳坳陷新生代构造-热演化历史研究. 地球物理学报, 49(4): 1127-1135. doi: 10.3321/j.issn:0001-5733.2006.04.026 [35] 任战利, 刘池阳, 张小会, 等, 2000a. 酒泉盆地群热演化史恢复及其对比研究. 地球物理学报, 43(5): 635-645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200005006.htm [36] 任战利, 刘池阳, 张小会, 等, 2000b. 酒东盆地热演化史与油气关系研究. 沉积学报, 18(4): 619-623. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200004024.htm [37] 任战利, 张小会, 刘池洋, 等, 1995. 花海-金塔盆地生油岩古温度的确定指明了油气勘探方向. 科学通报, 40(10): 921-923. doi: 10.3321/j.issn:0023-074X.1995.10.016 [38] 王世成, 袁万明, 王兰芬, 等, 1999. 花海拗陷的热演化和生烃期的磷灰石裂变径迹证据. 地球学报, 20(4): 428-432. doi: 10.3321/j.issn:1006-3021.1999.04.014 [39] 王志林, 李百祥, 2007. 酒东盆地地温场特征及肃州城区地热开发可行性分析. 甘肃地质, 16(1-2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ2007Z1011.htm [40] 卫平生, 张虎权, 陈启林. 2006. 银根-额济纳旗盆地油气地质特征及勘探前景. 北京: 石油工业出版社. [41] 叶加仁, 杨香华, 2003. 银-额盆地查干凹陷温压场特征及其油气地质意义. 天然气工业, 23(2): 15-19. doi: 10.3321/j.issn:1000-0976.2003.02.004 [42] 赵林, 贾蓉芬, 秦建中, 等, 1998. 二连盆地侏罗系地层热演化史研究. 地球化学, 27(6): 592-598. doi: 10.3321/j.issn:0379-1726.1998.06.011 [43] 左银辉, 邱楠生, 邓已寻, 等, 2013. 查干凹陷大地热流. 地球物理学报(待刊).