Characteristics of Hydroxyl in Lherzolite from Different Geological Setting
-
摘要: 名义无水矿物(NAMs)中的结构水在地球内部演化中扮演了重要角色.应用红外光谱对产自5个构造背景下的13个二辉橄榄岩进行了详细的结构水测定,探讨不同构造背景下橄榄岩结构水的含量和赋存机制.研究显示,全岩和橄榄石结构水含量按构造背景从高到低排序,依次为超高压地体、地幔柱、稳定克拉通、俯冲带和活化克拉通,反映了橄榄岩的水含量与构造环境具有显著相关性.在相同构造背景下,石榴石二辉橄榄岩比尖晶石二辉橄榄岩含更多结构水,表明上地幔水分布可能具有分层性.超高压地体和稳定克拉通样品中橄榄石具有[Si]空位导致的吸收峰3 611~3 613 cm-1,而缺乏由[Fe3+]引起的吸收峰3 325 cm-1和3 355 cm-1,表明地幔的还原性随深度增强.Abstract: Hydroxyl in minerals from upper mantle peridotite plays an important role in the evolution of the earth's interior. In order to understand the correlation between geological setting and hydroxyl incorporation in lherzolite,OH contents of 13 garnet/spinel lherzolite samples from different geological settings (i.e. stable craton,reactivated craton,mantle plume,subduction zone and UHP terrane) were investigated by fourier transform infrared (FTIR) spectroscopy analysis. The results demonstrate: (1) water contents in olivine and bulk rock follow the trend of UHP terrain >mantle plumb>stable craton >subduction zone >activated craton; (2) garnet lherzolite contains more water than that of spinel lherzolite for samples from the same geological setting,indicating that the upper mantle should be stratified with depth in terms of water distribution; (3) the presence of [Si] deficiency-caused IR peaks at 3 611-3 613 cm-1 together with the absence of [Fe3+] caused peaks at 3 325 cm-1 and 3 355 cm-1 indicates the upper mantle is more reduced with increasing pressure.
-
Key words:
- geological setting /
- lherzolite /
- fourier transform infrared /
- hydroxyl /
- tectonics /
- geophysics
-
图 1 不同构造背景下二辉橄榄岩样品显微照片
a.大麻坪尖晶石二辉橄榄岩样品DMP-18,单偏光;b.大麻坪尖晶石二辉橄榄岩样品DMP-18,正交偏光;c.南非金伯利岩石榴石二辉橄榄岩SA-1,单偏光;d.南非金伯利岩石榴石二辉橄榄岩SA-1,正交偏光;e.明溪石榴石二辉橄榄样品M1,正交偏光;f.明溪石榴石二辉橄榄样品M1,正交偏光;g.阿尔卑斯石榴石二辉橄榄岩样品Arami-1,单偏光;h.阿尔卑斯石榴石二辉橄榄岩样品Arami-1,正交偏光;i.夏威夷尖晶石二辉橄榄岩HW-1,单偏光;j.夏威夷尖晶石二辉橄榄岩HW-1正交偏光
Fig. 1. Photomicrographaphs of lherzolite from different geological settings
图 3 不同构造背景下橄榄岩中两种辉石结构水含量分配系数
a.本次研究样品来自南非、大麻坪、明溪、夏威夷、Arami;b.全球不同地区橄榄岩两种辉石结构水含量分配系数(前人研究).图释说明:NCC.华北克拉通(Yang et al., 2008; Bonadiman et al., 2009; Xia et al., 2010; Xia et al., 2012);CP.北美科罗拉多高原(Matveev and Stachel, 2007; Li et al., 2008);SA.南非卡普瓦尔克拉通(Kurosawa et al., 1997; Bell et al., 2004; Grant et al., 2007; Peslier et al., 2010);SEC.中国东南部(Yu et al., 2011);Off C.非克拉通地区(Kurosawa et al., 1997; Peslier and Luhr 2006; Grant et al., 2007; Li et al., 2008; Sundvall and Stalder, 2011);MW.地幔楔(Kurosawa et al., 1997; Peslier et al., 2006; Muramoto et al., 2011)
Fig. 3. OH partitioning coefficient between opx and cpx in lherzolite
图 4 橄榄岩橄榄石与单斜辉石(a)和斜方辉石(b)结构水含量相关性(图释同图 3)
Fig. 4. Measured water contents in olivine plotted against water contents in cpx (a) and opx (b) in peridotite xenoliths from different tectonic regions
表 1 二辉橄榄岩矿物化学组成
Table 1. Representative compositions of minerals in lherzolites
明溪石榴石二辉橄榄岩(M-1) 明溪尖晶石二辉橄榄岩(M-2) 大麻坪(DMP-18) cpx opx ol gt cpx opx ol sp cpx opx ol sp SiO2 52.58 55.27 41.06 42.27 52.61 54.38 0.01 0.09 52.10 55.49 41.00 0.06 TiO2 0.47 0.14 0.00 0.16 0.09 0.07 0.05 0.07 0.44 0.05 0.02 0.11 Al2O3 6.00 4.39 0.03 22.74 4.42 4.17 9.72 47.15 5.82 3.53 0.00 54.56 FeO* 2.91 0.57 9.82 7.76 2.76 5.86 0.02 12.37 2.53 6.21 9.47 12.08 MnO 0.06 6.12 0.14 0.28 0.06 0.10 0.00 0.17 0.07 0.11 0.10 0.13 MgO 15.10 0.09 47.98 19.50 16.59 32.45 0.14 19.06 14.70 32.81 48.39 19.50 CaO 19.41 31.42 0.08 5.06 21.07 0.95 48.06 0.00 21.40 0.59 0.02 0.00 Na2O 1.56 0.85 0.01 0.00 0.70 0.05 41.03 0.00 1.49 0.06 0.00 0.00 K2O 0.01 0.13 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 Cr2O3 1.28 0.00 0.05 1.59 1.00 0.62 0.00 20.75 0.82 0.32 0.01 12.58 NiO 0.05 0.12 0.31 0.00 0.03 0.12 0.10 0.25 0.00 0.00 0.00 0.35 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 Sum 99.45 99.09 99.47 99.35 99.34 98.76 99.15 99.96 99.30 99.17 99.00 99.35 Mg# 90.24 90.15 89.70 81.74 91.47 90.81 90.30 91.19 90.80 90.11 夏威夷尖晶石二辉橄榄岩(HW-2) 南非石榴石二辉橄榄岩(SA-1) cpx opx ol sp cpx opx ol gt SiO2 52.11 54.95 41.03 0.04 54.59 57.83 41.17 41.29 TiO2 0.14 0.06 0.04 0.05 0.17 0.04 0.03 0.11 Al2O3 5.35 3.69 0.01 45.31 2.89 0.74 0.00 22.42 FeO* 2.81 6.16 9.86 12.65 2.59 5.26 8.22 8.55 MnO 0.06 0.13 0.17 0.09 0.04 0.09 0.09 0.39 MgO 15.17 32.09 47.82 18.17 15.11 34.79 49.05 19.14 CaO 20.73 0.84 0.06 0.00 20.11 0.24 0.01 4.57 Na2O 1.52 0.09 0.00 0.00 2.33 0.05 0.00 0.00 K2O 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 Cr2O3 1.26 0.65 0.00 21.72 1.31 0.09 0.01 1.54 NiO 0.00 0.00 0.00 0.18 0.08 0.12 0.30 0.00 ZnO 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 Sum 99.16 98.66 99.00 98.28 99.23 99.24 98.88 98.00 Mg# 90.59 90.28 89.63 91.23 92.19 91.40 注:除尖晶石外,Fe当作FeO.Mg#=Mg/(Mg+Fe). 表 2 不同构造背景二辉橄榄岩结构水含量
Table 2. Summary of OH concentrations of cpx, opx and ol in lherzolite from different geological settings
构造背景 超高压地体 稳定克拉通 活化克拉通 地幔柱 俯冲带 样品 Arami SA-1 DMP-18 HW-1 HW-2 M-1 M11-5 M11-14 M11-16 M11-17 M-2 M11-44 M11-46 岩性 gt lher gt lher sp lher lher sp lher gt lher gt lher gt lher gt lher gt lher sp lher sp lher sp lher cpx 420 513 200 550 - 230 299 275 287 169 172 203 151 opx 163 202 63 195 179 100 82 105 133 78 134 91 97 ol 112 80 0 110 26 21 20 18 25 16 16 10 11 全岩 156 138 25 197 50 50 67 84 81 59 35 46 36 注:矿物代号见表 1.表中水含量单位是10-6.夏威夷HW-2单斜辉石颗粒粒径过小,低于检测线. 表 3 不同构造背景二辉橄榄岩橄榄石红外吸收峰(cm-1)以及与之对应晶格缺陷
Table 3. OH band position (cm-1) and possible planer OH-earing defect for mantle olivine
超高压 地幔柱 地幔柱 俯冲带 俯冲带 稳定克拉通 晶格缺陷和矿物相 gt lher lher sp lher gt lher spinel lher gt lher 3 637 3 637 serpentine 3 623 3 613 3 611 Si 3 591 10 Å-phase, 3 571 3 571 3 571 3 571 3 571 3 571 Ti-clinohumite 3 524 3 524 3 527 3 524 3 524(7) 3 524 Ti-clinohumite 3 355 3 355 3 355 3 355 Fe3+ 3 325 Fe3+ 3 425 Ti-clinohumite 3 481 3 437 3 437 3 660 10 Å-phase -
[1] Aubaud, C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen Partition Coefficients between Nominally Anhydrous Minerals and Basaltic Melts. Geophysical Research Letters, 31(20): L20611. doi: 10.1029/2004GL021341 [2] Bai, Q., Kohlstedt, D.L., 1992. Substantial Hydrogen Solubility in Olivine and Implications for Water Storage in the Mantle. Nature, 357: 672-674. doi: 10.1038/357672a0 [3] Balan, E., Ingrin, J., Delattre, S., et al., 2011. Theoretical Infrared Spectrum of OH-Defects in Forsterite. European Journal of Mineralogy, 23(3): 285-292. doi: 10.1127/0935-1221/2011/0023-2090 [4] Bell, D.R., 1992. Water in Mantle Minerals. Nature, 357: 646-647. doi: 10.1038/357646a0 [5] Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5-6): 465-474. doi: 10.2138/am-1995-5-607 [6] Bell, D.R., Rossman, G.R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391 [7] Bell, D.R., Rossman, G.R., Maldener J., et al., 2003. Hydroxide in Olivine: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. Journal of Geophysical Research, 108(B2): 2105. doi: 10.1029/2001JB000679 [8] Bell, D.R., Rossman, G.R., Moore, R.O., 2004. Abundance and Partitioning of OH in a High-Pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa. Journal of Petrology, 45(8): 1539-1564. doi: 10.1093/petrology/egh015 [9] Berry, A.J., Hermann, J., O'Neill, H.S.C., et al., 2005. Fingerprinting the Water Site in Mantle Olivine. Geology, 33(11): 869-872. doi: 10.1130/G21759.1 [10] Bonadiman, C., Hao, Y., Coltorti, M., et al., 2009. Water Contents of Pyroxenes in Intraplate Lithospheric Mantle. European Journal of Mineralogy, 21(3): 637-647. doi: 10.1127/0935-1221/2009/0021-1935 [11] Bozhilov, K.N., Green, H.W., Dobrzhinetskaya, L., 1999. Clinoenstatite in Alpe Arami Peridotite: Additional Evidence of Very High Pressure. Science, 284(5411): 128-132. doi: 10.1126/science.284.5411.128 [12] Bromiley, G., Keppler, H., 2004. An Experimental Investigation of Hydroxyl Solubility in Jadeite and Na-Rich Clinopyroxenes. Contributions to Mineralogy and Petrology, 147(2): 189-200. doi: 10.1007/s00410-003-0551-1 [13] Dobrzhinetskaya, L.F., Green, H.W., Wang, S., 1996. Alpe Arami: A Peridotite Massif from Depths of More than 300 Kilometers. Science, 271(5257): 1841-1845. doi: 10.1126/science.271.5257 [14] Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H.J., et al., 2002. Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland: Evidence of Deep Subduction. Journal of Metamorphic Geology, 20(5): 481-492. doi: 10.1046/j.1525-1314.2002.00383.x [15] Grant, K., Ingrin, J., Lorand, J.P., 2007. Water Partitioning between Mantle Minerals from Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 154(1): 15-34. doi: 10.1007/s00410-006-0177-1 [16] Guo, L.H., Lin, X.Y., Xie, M.Z., et al., 1998. Water in Mantle-Derived Xelloliths from the Hannuoba Basalt. Acta Geologica Sinica, 72(2): 138-143(in Chinese with English abstract). doi: 10.1111/j.1755-6724.1998.tb00398.x/abstract [17] Hauri, E.H., Gaetani, G.A., Green, T.H., 2006. Partitioning of Water during Melting of the Earth's Upper Mantle at H2O-Undersaturated Conditions. Earth and Planetary Science Letters, 248(3-4), 715-734. doi: 10.1016/j.epsl.2006.06.014 [18] Hirschmann, M.M., Tenner, T., Aubaud, C., et al., 2009. Dehydration Melting of Nominally Anhydrous Mantle: The Primacy of Partitioning. Physics of the Earth and Planetary Interiors, 176(1-2): 54-68. doi: 10.1016/j.pepi.2009.04.001 [19] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003. 40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China: Eruption Ages. Magma Evolution and Petrogenesis. Chemical Geology, 197(1-4): 287-318. doi: 10.1016/S0009-2541(02)00399-6 [20] Jin, Z.M., Green, H.W., Borch, R.S., et al., 1994. Mantle-Derived Xenoliths and the Token of a Modern Back-Arc Geotherm beneath Eastern China. Science in China (Series B), 23(4): 472-479(in Chinese). http://europepmc.org/abstract/CBA/274769 [21] Katayama, I., Michibayashi, K., Terao, R., 2011. Water Content of the Mantle Xenoliths from Kimberley and Implications for Explaining Textural Variations in Cratonic Roots. Geological Journal, 46(2-3): 173-182. doi: 10.1002/gj.1216 [22] Kohstedt, D.L., Keppler, H., Rubie, D.C., 1996. Solubility of Water in the α, β, and γ Phases of (Mg, Fe)2SiO4. Contrib. Minerl. Petrol. , 123(4): 345-357. doi: 10.1007/s004100050161 [23] Kovács, I., O'Neill, H.S.C., Hermann, J., et al., 2010. Site-specific Infrared OH Absorption Coefficients for Water Substitution into Olivine. American Mineralogist, 95(2-3): 292-299. doi: 10.2138/am.2010.3313 [24] Kurosawa, M., Yurimoto, H., Sueno, S., 1997. Patterns in the Hydrogen and Trace Element Compositions of Mantle Olivines. Physics and Chemistry of Minerals, 24(6): 385-395. doi: 10.1007/s002690050052 [25] Kusky, T.M., Windley, B.F., Zhai, M.G., 2007. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. Geological Society(Spel. ), 280(4): 1-34. doi: 10.1144/SP280.1 [26] Li, S.S., 1996. Kaavaapl Craton Tectonic Evolition. Geological Survey and Research, 73: 39-42(in Chinese). [27] Li, Z.X.A., Lee, C.T.A., Peslier, A.H., 2008. Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 113(B9): B09210. doi: 10.1029/2007JB005540 [28] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992. Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4), 339-342. doi: 10.1130/0091-7613 [29] Matveev, S., Stachel, T., 2007. FTIR Spectroscopy of OH in Olivine: A New Tool in Kimberlite Exploration. Geochimica et Cosmochimica Acta, 71(22): 5528-5543. doi: 10.1016/j.gca.2007.08.016 [30] Miller, G.H., Rossman, G.R., Harlow, G.E., 1987. The Natural Occurrence of Hydroxide in Olivine. Physics and Chemistry of Minerals, 14(5): 461-472. doi: 10.1007/BF00628824 [31] Montelli, R., Nolet, G., Dahlen, F.A., et al., 2006. A Catalogue of Deep Mantle Plumes: New Results from Finite-Frequency Tomography. Geochemistry Geophysics Geosystems, 7(11): Q11007. doi: 10.1029/2006GC001248 [32] Muramoto, M., Michibayashi, K., Ando, J., et al., 2011. Rheological Contrast between Garnet and Clinopyroxene in the Mantle Wedge: An Example from Higashi-Akaishi Peridotite Mass, SW Japan. Physics of the Earth and Planetary Interiors, 184(1-2): 14-33. doi: 10.1016/j.pepi.2010.10.008 [33] Norman, M.D., Garcia, M.O., 1999. Primitive Magmas and Source Characteristics of the Hawaiian Plume: Petrology and Geochemistry of Shield Picrites. Earth and Planetary Science Letters, 168(1-2): 27-44. doi: 10.1016/S0012-821X(99)00043-6 [34] Peslier, A.H., Luhr, J.F., 2006. Hydrogen Loss from Olivines in Mantle Xenoliths from Simcoe (USA) and Mexico: Mafic Alkalic Magma Ascent Rates and Water Budget of the Sub-Continental Lithosphere. Earth and Planetary Science Letters, 242(3-4): 302-319. doi: 10.1016/j.epsl.2005.12.019 [35] Peslier, A.H., Luhr, J.F., Post, J., 2002. Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-Arc Mantle Wedge. Earth and Planetary Science Letters, 201(1): 69-86. doi: 10.1016/S0012-821X(02)00663-5 [36] Peslier, A.H., Woodland, A.B., Bell, D.R., et al., 2010. Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons. Nature, 467: 78-81. doi: 10.1038/nature09317 [37] Peslier, A.H., Woodland, A.B., Wolff, J.A., 2008. Fast Kimberlite Ascent Rates Estimated from Hydrogen Diffusion Profiles in Xenolithic Mantle Olivines from Southern Africa. Geochimica et Cosmochimica Acta, 72(11): 2711-2722. doi: 10.1016/j.gca.2008.03.019 [38] Rauch, M., Keppler, H., 2002. Water Solubility in Orthopyroxene. Contributions to Mineralogy and Petrology, 143(5): 525-536. doi: 10.1007/s00410-002-0365-6 [39] Skogby, H., 2006. Water in Natural Mantle Minerals Ⅰ: Pyroxenes. Reviews in Mineralogy and Geochemistry, 62(1): 155-167. doi: 10.2138/rmg.2006.62.7 [40] Smyth, J.R., Bell, D.R., Rossman, G.R., 1991. Incorporation of Hydroxyl in Upper-Mantle Clinopyroxenes. Nature, 351 : 732 - 735 doi: 10.1038/351732a0 [41] Stalder, R., 2004. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 16(5): 703-711. doi: 10.1127/0935-1221/2004/0016-0703 [42] Sundvall, R., Skogby, H., Stalder, R., 2009. Hydrogen Diffusion in Synthetic Fe-Free Diopside. European Journal of Mineralogy, 21(5): 963-970. doi: 10.1127/0935-1221/2009/0021-1971 [43] Sundvall, R., Stalder, R., 2011. Water in Upper Mantle Pyroxene Megacrysts and Xenocrysts: A Survey Study. American Mineralogist, 96(8-9): 1215-1227. doi: 10.2138/am.2011.3641 [44] Wang, R., Zhang, B.M., 2011. Water in Peridotite Xenoliths from South China. Science China (Earth Sciences), 54(10): 1511-1522. doi: 10.1007/s11430-011-4196-z [45] Weis, D., M.O. Garcia, J.M. Rhodes, et al., 2011. Role of the Deep Mantle in Generating the Compositional Asymmetry of the Hawaiian Mantle Plume. Nature Geoscience, 4: 831-838. doi: 10.1038/ngeo1328 [46] Xia, Q.K., Hao, Y., Li, P., et al., 2010. Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton. Journal of Geophysical Research, 115(B7): B07207. doi: 10.1029/2009JB006694 [47] Xia, Q.K., Hao, Y.T., Liu, S.C., et al., 2012. Water Contents of the Cenozoic Lithospheric Mantle beneath the Western Part of the North China Craton: Peridotite Xenolith Constraints. Gondwana Research, 23(1): 108-118. doi: 10.1016/j.gr.2012.01.010 [48] Xia, Q.K., Yang, X.Z., Hao, Y.T., et al., 2008. Water Distribution and Circulation in the Deep Earth. Earth Science Frontiers, 14(2): 10-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200702001.htm [49] Yang, X.Z., Xia, Q.K., Deloule, E., et al., 2008. Water in Minerals of the Continental Lithospheric Mantle and Overlying Lower Crust: A Comparative Study of Peridotite and Granulite Xenoliths from the North China Craton. Chemical Geology, 256(1-2): 33-45. doi: 10.1016/j.chemgeo.2008.07.020 [50] Yu, J.M., 2009. Mineralogical Researching of Olivine in Hebei Damaping (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [51] Yu, Y., Xu, X.S., Griffin, W.L., 2011. H2O Contents and Their Modification in the Cenozoic Subcontinental Lithospheric Mantle beneath the Cathaysia Block, SE China. Lithos, 126(3-4): 182-197. doi: 10.1016/j.lithos.2011.07.009 [52] Zhai, M.G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China (Earth Sciences), 41(8): 1037-1046. doi: 10.1007/s11430-011-4250-x (in Chinese). [53] 郭立鹤, 林兴源, 谢漫泽, 等, 1998. 河北汉诺坝玄武岩中幔源虏体中的水. 地质学报, 72(2): 138-143. doi: 10.3321/j.issn:0001-5717.1998.02.005 [54] 金振民, Green, H.W., Borch, R.S., 金淑燕, 等, 1993. 幔源包体和中国东部现代弧后地热标志. 中国科学(B辑): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199304011.htm [55] 李上森, 1996. 南非卡普瓦尔地块的构造演化. 国外前寒武纪地质, 73: 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199601005.htm [56] 夏群科, 杨晓志, 郝艳涛, 等, 2008. 深部地球中水的分布和循环. 地学前缘, 14(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702001.htm [57] 俞佳宁, 2009. 河北大麻坪橄榄石的矿物学研究(硕士学位论文). 北京: 中国地质大学. [58] 翟明国, 2011. 克拉通化与华北陆块的形成. 中国科学(地球科学), 41(8): 1037-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108001.htm