• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    早三叠世下扬子古海洋地球化学环境的修复过程

    左景勋 童金南 赵来时 常德峰 赵荣军

    左景勋, 童金南, 赵来时, 常德峰, 赵荣军, 2013. 早三叠世下扬子古海洋地球化学环境的修复过程. 地球科学, 38(3): 441-453. doi: 10.3799/dqkx.2013.044
    引用本文: 左景勋, 童金南, 赵来时, 常德峰, 赵荣军, 2013. 早三叠世下扬子古海洋地球化学环境的修复过程. 地球科学, 38(3): 441-453. doi: 10.3799/dqkx.2013.044
    ZUO Jing-xun, TONG Jin-nan, ZHAO Lai-shi, CHANG De-feng, ZHAO Rong-jun, 2013. Geochemical Environment Restoration of the Lower Yangtze Paleocean in the Early Triassic, Southeastern China. Earth Science, 38(3): 441-453. doi: 10.3799/dqkx.2013.044
    Citation: ZUO Jing-xun, TONG Jin-nan, ZHAO Lai-shi, CHANG De-feng, ZHAO Rong-jun, 2013. Geochemical Environment Restoration of the Lower Yangtze Paleocean in the Early Triassic, Southeastern China. Earth Science, 38(3): 441-453. doi: 10.3799/dqkx.2013.044

    早三叠世下扬子古海洋地球化学环境的修复过程

    doi: 10.3799/dqkx.2013.044
    基金项目: 

    地质过程与矿产资源国家重点实验室开放课题 GPMR200903

    地质过程与矿产资源国家重点实验室开放课题 MSFGGPMR201310

    科技部基础性工作专项 2006FY120300-11

    国家自然科学基金项目 40672023

    国家自然科学基金项目 41272025

    国家自然科学基金项目 40972003

    详细信息
      作者简介:

      左景勋(1963-), 男, 博士, 教授级高工, 主要从事沉积学及矿产勘查工作.E-mail: jxzuo@nigpas.ac.cn

      通讯作者:

      赵来时, E-mail: lszhao@cug.edu.cn

    • 中图分类号: P67

    Geochemical Environment Restoration of the Lower Yangtze Paleocean in the Early Triassic, Southeastern China

    • 摘要: 巢湖平顶山北坡剖面下三叠统岩石化学成分分析表明, SiO2、Al2O3、Fe2O3、FeO、MgO、Na2O、K2O、TiO2、P2O5及微量元素Ba、V、Be、Nb、Zn、Cu、Ni、Co、Pb主要富集在下三叠统格里斯巴赫(Griesbachian)、迪纳(Dienerian)及斯密斯(Smithian)亚阶中, 形成了8次显著的正异常, 异常的强度、规模由下向上呈下降趋势; 微量元素Sr和常量元素CaO主要富集在下三叠统上部斯帕斯(Spathian)亚阶中, 其含量由下向上呈逐渐增加趋势.前者含量与碳酸盐岩的碳同位素组成(δ13C)呈负相关关系, 后者含量与碳酸盐岩的碳同位素组成(δ13C)呈正相关关系.海相碳酸盐岩碳同位素组成(δ13C)指示初始生产力大小, 同时亦是海洋生态环境改善的指示标志; 负相关表明环境恶化、生物萧条, 正相关表明环境适宜、生物繁盛.据常量元素和微量元素分布异常特点在下三叠统地层中识别出8次地质事件, 其规模及影响强度由早到晚逐渐变小及减弱; 晚二叠世末期及早三叠世初期的火山喷发将各种有害元素大量输向海洋, 导致海水中粘土矿物、微量元素含量异常增高, 海洋生态环境恶化.随着时间推移, 火山活动逐渐平息, 海洋中各种有害组分逐渐排除, 海水得到净化, 生态环境渐渐恢复.

       

    • 图  1  下扬子地区早三叠世岩相古地理(据冯增昭等, 1997修编)

      Fig.  1.  Palaeogeography of the Lower Yangtze area in the Early Triassic

      图  2  巢湖平顶山北坡剖面下三叠统常量元素之间的相关性

      Fig.  2.  Relationship between Al2O3, K2O, MgO and TiO2 in the north Pingdingshan Section, Chaohu

      图  3  巢湖平顶山北坡剖面Mg/Ca和Sr/Ca分布

      a.下三叠统沉积岩;b.下三叠统粘土岩、泥岩;c.下三叠统灰岩、泥灰岩

      Fig.  3.  Ratios of Mg/Ca vs Sr/Ca of the Lower Triassic in the north Pingdingshan Section, Chaohu

      图  4  平顶山北坡剖面下三叠统常量元素、微量元素分布特征和早三叠世地质事件分布

      Fig.  4.  Distribution of main and trace elements in the Lower Triassic and geo-events identified in the north Pingdingshan Section, Chaohu, Anhui Province

      表  1  巢湖平顶山北坡剖面下三叠统常量元素分析结果(%)

      Table  1.   Data of main elements of the Lower Triassic in the north Pingdingshan Section, Chaohu, Anhui Province (%)

      层位 样号 岩性 SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O MnO TiO2 P2O5 Lost
      斯帕斯亚阶 ACP-69 灰岩 2.49 0.59 0.05 0.17 0.05 53.80 0.09 0.02 0.03 0.02 0.01 42.53
      ACP-68 灰岩 2.62 0.74 0.01 0.27 0.13 53.59 0.12 0.04 0.02 0.06 0.01 42.35
      ACP-67 灰岩 2.08 0.60 0.01 0.23 0.03 54.07 0.06 0.03 0.01 0.02 0.01 42.80
      ACP-66 灰岩 1.56 0.55 0.01 0.07 0.01 54.70 0.07 0.01 0.01 0.03 0.01 42.85
      ACP-65 灰岩 4.15 0.94 0.10 0.15 0.11 52.31 0.12 0.05 0.02 0.04 0.02 41.83
      ACP-64 灰岩 7.15 2.14 0.48 0.25 0.25 49.50 0.08 0.28 0.05 0.10 0.02 39.55
      ACP-62-2 灰岩 4.64 1.26 0.24 0.20 0.22 51.77 0.15 0.12 0.02 0.05 0.02 41.18
      ACP-61 灰岩 7.56 2.17 0.30 0.40 0.32 48.86 0.17 0.28 0.02 0.09 0.03 39.65
      斯密斯亚阶 ACP-60 灰岩 12.24 3.29 1.14 0.32 0.41 44.89 0.17 0.49 0.05 0.15 0.05 36.68
      ACP-59 泥灰岩 18.77 6.07 2.66 0.45 0.89 37.40 0.19 1.14 0.07 0.43 0.07 31.73
      ACP-58 灰岩 11.27 3.21 0.50 0.57 0.35 45.85 0.23 0.41 0.08 0.16 0.04 37.20
      ACP-57 灰岩 14.76 3.82 0.92 0.50 0.53 42.79 0.34 0.57 0.10 0.18 0.06 35.28
      ACP-56-1 灰岩 15.29 3.83 1.25 0.45 0.48 42.36 0.46 0.58 0.13 0.17 0.07 34.78
      ACP-55-1 灰岩 14.46 3.05 1.20 0.38 0.34 43.57 0.40 0.37 0.26 0.14 0.09 35.60
      ACP-54-2 灰岩 12.61 2.75 0.69 0.67 0.42 45.00 0.34 0.39 0.13 0.12 0.04 36.70
      ACP-53-2 灰岩 10.31 2.46 1.19 0.45 0.40 46.32 0.31 0.28 0.09 0.11 0.05 37.88
      ACP-52-2 灰岩 48.84 14.43 4.21 0.98 1.83 11.58 0.67 2.98 0.04 0.67 0.12 13.50
      ACP-51-2 灰岩 12.55 3.07 0.50 0.43 0.41 45.26 0.42 0.39 0.07 0.17 0.06 36.53
      ACP-50-4 灰岩 9.86 2.39 0.34 0.42 0.33 47.22 0.39 0.26 0.06 0.11 0.06 38.43
      ACP-49-5 灰岩 21.30 5.51 3.19 0.45 0.84 35.77 0.41 0.92 0.15 0.26 0.08 30.98
      ACP-48-3 灰岩 12.58 3.53 0.42 0.45 0.53 44.89 0.44 0.57 0.08 0.14 0.06 36.18
      ACP-47-4 瘤灰岩 15.19 4.10 0.60 0.57 0.59 42.77 0.51 0.67 0.08 0.19 0.07 34.53
      ACP-46-3 瘤灰岩 17.36 3.64 1.01 0.37 0.61 41.65 0.74 0.52 0.10 0.16 0.06 33.65
      迪纳亚阶 ACP-45-2 瘤灰岩 20.44 4.78 0.83 0.50 0.71 38.98 0.63 0.79 0.10 0.20 0.05 31.85
      ACP-44-4 瘤灰岩 20.00 5.08 0.97 0.48 0.73 38.76 0.71 0.83 0.10 0.20 0.06 31.95
      ACP-43-5 瘤灰岩 20.58 4.59 1.48 0.40 0.63 38.84 0.70 0.69 0.08 0.22 0.08 31.60
      ACP-42-4 灰岩 16.96 4.35 0.67 0.42 0.61 41.60 0.67 0.64 0.08 0.17 0.06 33.65
      ACP-41-2 瘤灰岩 17.17 4.45 1.63 0.33 0.65 40.78 0.68 0.69 0.12 0.19 0.08 33.10
      ACP-40-2 瘤灰岩 17.46 4.34 1.66 0.55 2.21 38.58 0.53 0.72 0.15 0.20 0.07 33.38
      ACP-39-2 瘤灰岩 30.63 8.19 3.66 0.35 1.09 28.27 0.63 1.54 0.11 0.40 0.08 24.88
      ACP-38-2 瘤灰岩 16.06 4.04 1.51 0.32 0.52 41.96 0.52 0.60 0.10 0.17 0.07 33.98
      ACP-37-2 瘤灰岩 16.38 4.09 1.41 0.42 0.61 42.78 0.59 0.60 0.12 0.19 0.08 32.60
      ACP-36-2 瘤灰岩 22.00 4.64 1.01 0.40 0.65 38.26 0.67 0.69 0.10 0.19 0.07 31.20
      ACP-35-2 瘤灰岩 16.96 4.26 1.61 0.38 0.53 41.10 0.51 0.65 0.10 0.22 0.07 33.50
      ACP-34 瘤灰岩 20.35 5.30 1.59 0.58 0.68 37.94 0.59 0.92 0.09 0.24 0.08 31.50
      ACP-32 泥岩 62.11 18.38 4.30 0.87 2.11 1.13 0.82 3.76 0.03 0.87 0.16 5.28
      ACP-31 泥岩 60.70 17.61 6.65 0.67 1.90 0.87 0.80 3.44 0.05 0.85 0.16 6.10
      ACP-30 泥岩 44.97 13.01 4.14 0.95 1.36 15.36 0.71 2.58 0.09 0.62 0.13 15.93
      ACP-29 灰岩 15.08 3.73 0.72 0.40 0.46 43.17 0.53 0.54 0.09 0.17 0.06 34.90
      ACP-28 灰岩 15.37 3.76 0.60 0.55 0.47 42.89 0.49 0.56 0.09 0.18 0.07 34.85
      ACP-27 瘤灰岩 16.62 4.45 0.81 0.75 0.53 41.31 0.49 0.63 0.09 0.22 0.07 33.90
      格里斯巴赫亚阶 ACP-26 灰岩 15.18 3.72 0.95 0.48 0.51 42.76 0.51 0.55 0.10 0.17 0.06 34.88
      ACP-25 泥岩 61.98 18.06 4.66 0.67 1.89 0.92 0.60 3.46 0.03 0.88 0.13 6.55
      ACP-24 泥岩 61.20 18.25 4.67 0.95 1.91 0.80 0.61 3.68 0.02 0.86 0.13 6.75
      ACP-23 灰岩 18.48 4.28 1.24 0.67 0.65 39.92 0.44 0.68 0.09 0.20 0.06 33.15
      ACP-22 灰岩 22.99 5.64 1.47 0.70 0.78 36.03 0.53 0.96 0.10 0.26 0.06 30.35
      ACP-21 泥岩 61.50 18.32 4.49 1.57 2.00 0.85 0.78 3.72 0.06 0.84 0.12 5.58
      ACP-19 泥岩 61.80 18.12 4.35 1.50 1.94 0.78 0.83 3.77 0.04 0.88 0.14 5.68
      ACP-18 泥岩 50.97 14.98 3.98 1.05 1.59 10.34 0.83 3.06 0.08 0.71 0.11 12.13
      ACP-17 瘤灰岩 33.76 9.55 3.31 1.48 1.21 24.92 0.62 1.87 0.11 0.45 0.08 22.50
      ACP-16 泥岩 60.12 18.56 5.94 0.92 1.80 0.91 0.41 3.72 0.08 0.85 0.11 6.40
      ACP-15 泥岩 61.10 18.55 5.47 0.67 1.81 0.83 0.46 3.62 0.07 0.86 0.10 6.28
      ACP-14 泥灰岩 41.63 11.86 3.46 1.12 1.49 18.22 0.54 2.41 0.08 0.55 0.10 18.38
      ACP-13 泥岩 34.09 8.64 3.09 1.20 0.92 25.94 0.57 1.72 0.10 0.40 0.08 23.08
      ACP-12-2 泥灰岩 31.43 7.45 4.59 0.23 0.79 28.10 0.43 1.46 0.12 0.36 0.09 24.83
      ACP-11 泥灰岩 32.58 5.91 4.21 0.10 0.79 28.86 0.36 1.10 0.16 0.28 0.07 25.43
      ACP-10 泥灰岩 39.22 9.51 3.42 0.38 1.17 22.43 0.50 1.93 0.11 0.45 0.10 20.63
      ACP-09 泥灰岩 40.56 9.60 4.60 0.32 1.08 20.92 0.56 1.90 0.14 0.44 0.08 19.65
      ACP-08 泥灰岩 47.23 12.20 4.95 0.32 1.29 14.68 0.65 2.46 0.17 0.56 0.10 15.25
      ACP-07 泥灰岩 39.96 9.13 4.43 0.63 1.08 21.61 0.44 1.85 0.19 0.42 0.08 20.05
      ACP-06 泥灰岩 44.79 11.25 4.49 0.50 1.21 17.13 0.58 2.37 0.10 0.50 0.09 16.85
      ACP-05 泥灰岩 35.22 6.93 4.16 0.23 2.37 24.81 0.33 1.46 0.23 0.31 0.06 23.70
      ACP-03 泥岩 63.38 18.25 3.55 0.83 1.92 0.83 0.63 3.89 0.02 0.71 0.09 5.70
      ACP-02 白色粘土 63.62 18.75 2.66 0.60 1.70 0.97 0.36 3.69 0.03 0.74 0.06 6.65
      ACP-01 硅质岩 63.07 18.14 3.60 0.83 1.80 0.66 0.41 3.87 0.02 0.53 0.13 6.75
      下载: 导出CSV

      表  2  巢湖平顶山北坡剖面下三叠统各种元素含量(10-6)

      Table  2.   Data of trace elements of the Lower Triassic in the north Pingdingshan Section, Chaohu, Anhui Province (10-6)

      层位 样号 岩性 Sr Ba Ni Co Cr V Cu Pb Be Nb Zn
      斯帕斯亚阶 ACP-69 灰岩 522.00 37.00 15.00 7.20 <5.00 10.90 6.70 21.30 0.30 5.20 6.00
      ACP-68 灰岩 333.00 37.00 14.00 6.70 <5.00 10.10 5.80 17.70 0.30 4.90 7.00
      ACP-67 灰岩 462.00 37.00 14.00 6.50 <5.00 9.40 4.70 23.80 0.30 4.50 6.00
      ACP-66 灰岩 529.00 26.00 15.00 7.80 <5.00 9.40 5.30 23.80 0.30 5.40 5.00
      ACP-65 灰岩 420.00 103.00 15.00 7.50 <5.00 12.30 8.10 24.40 0.40 5.90 9.00
      ACP-64 灰岩 247.00 196.00 17.00 8.10 < 5.00 18.20 8.80 19.30 0.50 6.70 17.00
      ACP-62-2 灰岩 267.00 49.00 16.00 7.60 <5.00 14.10 7.10 20.80 0.40 6.80 10.00
      ACP-61 灰岩 395.00 88.00 17.00 7.30 <5.00 19.00 9.20 16.90 0.50 6.40 17.00
      斯密斯亚阶 ACP-60 灰岩 243.00 97.00 20.00 9.50 5.00 26.30 9.70 22.50 0.70 7.90 23.00
      ACP-59 泥灰岩 186.00 146.00 27.00 12.10 20.60 54.20 20.00 23.70 1.20 12.40 45.00
      ACP-58 灰岩 244.00 140.00 18.00 7.60 <5.00 25.40 8.80 19.00 0.60 7.30 22.00
      ACP-57 灰岩 260.00 138.00 19.00 8.20 <5.00 32.10 10.90 28.10 0.90 7.50 33.00
      ACP-56-1 灰岩 237.00 129.00 19.00 7.70 7.00 30.20 16.00 25.50 0.80 8.50 23.00
      ACP-55-1 灰岩 330.00 109.00 24.00 11.60 7.00 30.40 17.40 21.90 0.70 7.60 33.00
      ACP-54-2 灰岩 266.00 88.00 18.00 7.00 <5.00 25.10 11.50 25.60 0.70 7.30 20.00
      ACP-53-2 灰岩 319.00 89.00 22.00 9.30 <5.00 35.90 12.70 24.50 0.70 6.30 34.00
      ACP-52-2 灰岩 103.00 344.00 35.00 11.00 58.10 99.90 27.80 22.00 2.30 17.80 88.00
      ACP-51-2 灰岩 244.00 83.00 18.00 7.80 6.40 25.70 9.50 21.60 0.60 8.40 20.00
      ACP-49-5 灰岩 199.00 152.00 31.00 11.80 18.90 43.90 18.50 26.90 1.20 10.10 38.00
      ACP-48-3 灰岩 161.00 75.00 17.00 8.20 6.20 24.90 9.80 20.50 0.70 7.10 19.00
      ACP-47-4 瘤灰岩 200.00 92.00 18.00 8.00 9.20 31.40 15.90 18.00 0.80 9.00 23.00
      ACP-46-3 瘤灰岩 152.00 82.00 19.00 9.20 7.30 27.20 11.70 20.00 0.70 7.80 26.00
      迪纳亚阶 ACP-45-2 瘤灰岩 164.00 95.00 18.00 7.60 10.60 33.80 11.80 14.90 0.90 8.00 27.00
      ACP-44-4 瘤灰岩 151.00 105.00 20.00 8.30 14.50 34.90 14.50 21.10 1.00 9.10 38.00
      ACP-43-5 瘤灰岩 127.00 99.00 20.00 9.50 5.60 32.10 16.50 18.80 0.80 7.50 28.00
      ACP-42-4 灰岩 154.00 88.00 17.00 7.30 11.10 29.00 15.40 19.80 0.80 9.10 18.00
      ACP-41-2 瘤灰岩 153.00 101.00 20.00 9.50 15.00 34.90 21.30 25.30 0.90 7.20 29.00
      ACP-40-2 瘤灰岩 137.00 321.00 18.00 8.20 8.60 32.10 10.90 19.50 0.90 9.10 27.00
      ACP-39-2 瘤灰岩 106.00 235.00 28.00 11.40 23.90 57.20 27.50 45.70 1.50 13.10 71.00
      ACP-38-2 瘤灰岩 142.00 95.00 19.00 9.30 10.30 29.70 10.70 19.10 0.80 9.20 28.00
      ACP-37-2 瘤灰岩 149.00 115.00 19.00 8.80 7.90 30.80 17.30 22.00 0.80 8.70 27.00
      ACP-36-2 瘤灰岩 142.00 96.00 18.00 7.70 14.20 31.80 15.60 22.40 0.80 9.50 26.00
      ACP-34 瘤灰岩 130.00 142.00 19.00 8.50 18.40 38.70 15.40 22.00 1.00 9.50 31.00
      ACP-33 泥岩 88.00 381.00 34.00 9.70 80.70 135.80 61.40 15.10 3.00 19.80 81.00
      ACP-32 泥岩 92.00 415.00 43.00 16.60 91.00 160.60 47.80 18.30 3.40 21.00 89.00
      ACP-31 泥岩 83.00 387.00 55.00 23.90 85.50 146.10 60.40 33.60 2.80 21.20 119.00
      ACP-30 泥岩 89.00 314.00 43.00 22.20 48.20 110.70 49.50 28.00 2.00 17.90 89.00
      ACP-29 灰岩 183.00 89.00 16.00 7.10 10.10 27.60 10.80 18.90 0.70 8.60 23.00
      ACP-28 灰岩 183.00 102.00 16.00 7.50 7.80 28.00 11.70 17.60 0.70 7.40 23.00
      格里斯巴赫亚阶 ACP-26 灰岩 158.00 85.00 18.00 8.20 9.20 28.80 12.60 19.90 0.70 9.00 27.00
      ACP-25 泥岩 90.00 423.00 35.00 10.70 85.30 122.60 31.60 17.30 3.20 20.90 78.00
      ACP-24 泥岩 97.00 382.00 38.00 11.00 86.50 125.20 61.40 13.10 3.20 20.50 79.00
      ACP-23 灰岩 160.00 96.00 18.00 8.40 17.10 31.20 20.60 28.10 0.80 8.90 34.00
      ACP-22 灰岩 163.00 153.00 22.00 11.40 16.10 41.10 9.60 30.20 1.10 11.10 37.00
      ACP-21 泥岩 102.00 389.00 45.00 18.70 82.70 117.00 14.60 17.40 3.20 21.50 96.00
      ACP-20 泥岩 105.00 351.00 47.00 32.80 87.20 133.80 122.00 56.50 3.30 20.70 96.00
      ACP-19 泥岩 101.00 335.00 41.00 16.70 80.10 120.50 18.70 21.40 3.10 21.70 95.00
      ACP-18 泥岩 108.00 295.00 41.00 20.40 59.00 94.50 15.70 25.50 2.50 18.80 81.00
      ACP-17 瘤灰岩 131.00 202.00 28.00 14.40 34.90 62.70 20.90 37.70 1.60 13.70 67.00
      ACP-16 泥岩 95.00 378.00 45.00 16.30 84.40 114.50 24.10 23.30 3.20 21.50 102.00
      ACP-15 泥岩 105.00 377.00 46.00 15.20 79.30 124.60 105.50 31.40 3.30 21.00 101.00
      ACP-14 泥灰岩 85.00 242.00 28.00 11.60 45.50 74.80 16.60 26.10 2.00 16.10 74.00
      ACP-13 泥岩 71.00 433.00 25.00 11.20 25.00 52.30 19.60 24.60 1.50 12.60 48.00
      ACP-12-2 泥灰岩 55.00 203.00 22.00 10.60 25.20 52.10 23.40 26.60 1.50 12.70 45.00
      ACP-11 泥灰岩 63.00 228.00 20.00 9.20 12.30 41.70 17.10 26.60 1.40 10.60 47.00
      ACP-10 泥灰岩 80.00 328.00 28.00 10.90 32.40 60.20 19.90 27.10 2.00 12.30 66.00
      ACP-09 泥灰岩 72.00 191.00 28.00 12.90 31.70 57.00 19.30 26.60 1.80 14.00 54.00
      ACP-08 泥灰岩 83.00 254.00 32.00 14.30 47.10 73.00 23.90 25.80 2.20 16.50 62.00
      ACP-07 泥灰岩 75.00 234.00 30.00 13.50 33.90 57.80 33.30 23.10 1.80 13.40 52.00
      ACP-06 泥灰岩 77.00 232.00 31.00 16.90 38.20 67.90 38.10 29.00 2.10 15.10 83.00
      ACP-05 泥灰岩 106.00 350.00 31.00 8.60 22.40 104.70 34.20 21.40 3.70 11.20 137.00
      ACP-03 泥岩 73.00 293.00 78.00 14.60 80.80 148.30 70.10 30.00 3.50 25.00 150.00
      ACP-02 粘土层 100.00 347.00 23.00 9.10 70.40 106.10 24.30 34.80 3.20 23.50 70.00
      ACP-01 硅质岩 73.00 289.00 78.00 14.40 109.40 149.40 70.10 48.60 3.50 22.90 151.00
      下载: 导出CSV
    • [1] Baud, A., Magaritz, M., Holser, W.T., 1989. Permian-Triassic of the Tethys: Carbon Isotope Studies. Geologische Rundschau, 78 (2): 649-677. doi: 10.1007/BF01776196
      [2] Bowring, S.A., Erwin, D.H., Jin, Y.G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End-Permian Mass Extinction. Science, 280 (5366): 1039-1045. doi: 10.1126/science.280.5366.1039
      [3] Cao, C.Q., Wang, W., Jin, Y.G., 2002. Carbon Isotope Excursions across the Permian-Triassic Boundary in the Meishan Section, Zhejiang Province, China. Chinese Science Bulletin, 47 (13): 1125-1129. doi: 10.1360/02tb9252
      [4] Carpenter, S.J., Lohmann, K.C., 1992. Sr/Mg Ratios of Modern Marine Calcite: Empirical Indicators of Ocean Chemistry and Precipitation Rate. Geochim. Cosmochim. Acta, 56 (5): 1837-1849. doi: 10.1016/0016-7037(92)90314-9
      [5] Carpenter, S.J., Lohmann, K.C., Holden, P., et al., 1991. δ18O Values, 87Sr/86Sr and Sr/Mg Ratios of Late Devonian Abiotic Marine Calcite: Implications for the Composition of Ancient Seawater. Geochim. Cosmochim. Acta, 55 (7): 1991-2010. doi: 10.1016/0016-7037(91)90038-7
      [6] Chai, Z.F., Ma, S.L., Mao, X.Y., et al., 1986. Elemental Geochemical Characters at the Permian-Triassic Boundary Section in Changxing, Zhejiang, China. Acta Geologica Sinica, (2): 139-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198602003.htm
      [7] Chen, J.B., Zhao, L.S., Zhong, Q.C., et al., 2012. In Situ Rare Earth Elememt in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science—Journal of China University of Geosciences, 37 (1): 25-34.
      [8] Cicero, A.D., Lohmann, K.C., 2001. Sr/Mg Variation during Rock-Water Interaction: Implication for Secular Changes in the Elemental Chemistry of Ancient Seawater. Geochim. Cosmochim. Acta, 65(5): 741-761. doi: 10.1016/S0016-7037(00)00594-9
      [9] Clapham, M.E., Shen, S.Z., Bottjer, D.J., 2009. The Double Mass Extinction Revisited: Reassessing the Severity, Selectivity, and Causes of the End-Guadalupian Biotic Crisis (Late Permian). Paleobiology, 35(1): 32-50. doi: 10.1666/08033.1
      [10] Clerk, D.L., Wang, C.Y., Orth, C.J., et al., 1986. Conodont Survival and Low Iridium Abundances across the Permian-Triassic Boundary in South China. Science, 233 (4767): 984-986. doi: 10.1126/science 233.4767.984
      [11] Ding, M.H., 1983. Lower Triassic Conodonts from Mount Majiashan in Anhui Province and Their Stratigraphic Significance. Earth Science—Journal of Wuhan College of Geology, (2): 37-48 (in Chinese with English abstract).
      [12] Erwin, D.H., 1994. The Permo-Triassic Extinction. Nature, 367: 231-236. doi: 10.1038/367231a0
      [13] Erwin, D.H., 2000. Life's Downs and Ups. Nature, 404: 129-130. doi: 10.1038/35004679
      [14] Erwin, D.H., 2007. Disparity: Morphological Pattern and Developmental Context. Palaeontology, 50 (1): 57-73. doi: 10.1111/j.1475-4983.2006.00614.x
      [15] Feng, Z.Z., Bao, Z.D., Li, S.W., 1997. Lithofacies Palaeogeography of Early and Middle Triassic of South China. Petroleum Industry Press, Beijing (in Chinese).
      [16] Frank, T.D., Lohman, K.C., 1996. Diagenesis of Fibrous Magnesian Calcite Marine Cement: Implications for the Interpretation of δ18O and δ13C Values of Ancient Equivalents. Geochim. Cosmochim. Acta, 60(13): 2427-2436. doi: 10.1016/0016-7037(96)00097-X
      [17] Guo, P.X., Xu, J.C., 1980. Cognition to Era of Qinglong Formation in Chaohu Area. Journal of Stratigraphy, 4(4): 310-315 (in Chinese).
      [18] Haas, J., Demeny, A., Hips, K., et al., 2006. Carbon Isotope Excursions and Microfacies Changes in Marine Permian-Triassic Boundary Sections in Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2-4): 160-181. doi: 10.1016/j.palaeo.2005.11.017
      [19] Hardie, L.A., 1996. Secular Variation in Seawater Chemistry: An Explanation for the Coupled Secular Variation in the Mineralogies of Marine Limestones and Potash Evaporates over the Past 600 m. y. . Geology, 24(3): 279-283. doi: 10.1130/0091-7613(1996) 024<0279:SVISCA>2.3.CO; 2
      [20] He, J.W., Rui, L., Chai, Z.F., et al., 1987. Vocanic Activities during Late Permian to Early Triassic in Meishan Area, Changxing, Zhejiang Province. Journal of Stratigraphy, 11(3): 194-199 (in Chinese).
      [21] Hou, S.X., 1987. Discovery of Volcanoclastics in Tongling Area, Anhui Province. Journal of Stratigraphy, 11(1): 75 (in Chinese).
      [22] Isozaki, Y., Shimizu, N., Yao, J.X., et al., 2007. End-Permian Extinction and Volcanism-Induced Environmental Stress: The Permian-Triassic Boundary Interval of Lower-Slope Facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252 (1-2) : 218-238. doi: 10.1016/j.palaeo.2006.11.051
      [23] Kamo, S.L., Crowley, J., Bowring, S.A., 2006. The Permian-Triassic Boundary Event and Eruption of the Siberian Flood Basalts: An Inter-Laboratory U-Pb Dating Study. Geochim. Cosmochim. Acta (Suppl. 1), 70(18): A303. doi: 10.1016/j.gca.2006.06.616
      [24] Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182 (1): 15-34. doi: 10.1016/S0009-2541(01)00273-X
      [25] Krull, E.S., Retallack, G.J., 2000. δ13C Depth Profiles from Paleosols across the Permian-Triassic Boundary: Evidence for Methane Release. Geological Society of America Bulletin, 112 (9): 1459-1472. doi: 10.1130/0016-7606(2000)112<1459:CDPFPA>2.0.CO; 2
      [26] Li, J.H., Ding, B.L., 1981. The Middle-Lower Triassic Boundary in the Lower Yangtze Area. Journal of Stratigraphy, 5 (1): 70-75 (in Chinese).
      [27] Li, S.W., Wu, S.H., 1998. Sedimentary Environment and Lithology of the Middle-Lower Triassic Qinglong Formation, Chaoxian, Anhui Province. In: Feng, Z.Z., et al., eds., Research on Palaeogeography and Lithofacies of the Middle-Lower Triassic Qinglong Formation in the Lower Yangtze Area. Yunan Technology Press, Kungming, 82-91 (in Chinese).
      [28] Li, S.Y., 1996. Discovery of Volcanic-Clastic Flow Deposits in the Lower Triassic Nanlinghu Formation in the Chaohu Area, Anhui. Journal of Stratigraphy, 20 (4): 277-279 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ604.005.htm
      [29] Li, Y.C., Zhou, Z.Z., 2002. Massive Dissociation of Gas Hydrated during Oceanic Anoxia as a Cause of Mass Extinction at the End of Permian. Geology Geochemistry, 30(1): 57-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200201009.htm
      [30] Meyer, K.M., Yu, M., Jost, A.B., et al., 2011. δ13C Evidence that High Primary Productivity Delayed Recovery from End-Permian Mass Extinction. Earth and Planetary Science Letters, 302 (3-4): 378-384. doi: 10.1016/j.epsl.2010.12.033
      [31] Mu, X., Kershaw, S., Li, Y., et al., 2009. High-Resolution Carbon Isotope Changes in the Permian-Triassic Boundary Interval, Chongqing, South China: Implications for Control and Growth of Earliest Triassic Microbialites. Journal of Asian Earth Sciences, 36 (6): 434-441. doi: 10.1016/j.jseaes.2007.08.004
      [32] Mucci, A., Morse, J.W., 1983. The Incorporation of Mg2+ and Sr2+ into Calcite Overgrowths: Influences of Growth Rate and Solution Composition. Geochim. Cosmochim. Acta, 47 (2): 217-233. doi: 10.1016/0016-7037(83)90135-7
      [33] Payne, J.L., Lehrmann, D.J., Wei, J.Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305 (5683): 506-509. doi: 10.1126/science.1097023
      [34] Reichow, M.K., Pringle, M.S., ArMukhamedov, A.I., et al., 2009. The Timing and Extent of the Eruption of the Siberian Traps Large Igneous Province: Implications for the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 277 (1-2): 9-20. doi: 10.1016/j.epsl.2008.09.030
      [35] Rui, L., Jiang, N.Y., 1984. Lithofacies and Biofacies of Latest Permian and Earliest Triassic at the Bordering Region of Jiangsu, Zhejiang and Anhui Provinces. Acta Palaeontologica Sinica, 23 (3): 286-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX198403003.htm
      [36] Saunders, A., Reichow, M., 2009. The Siberian Traps and the End-Permian Mass Extinction: A Critical Review. Chinese Science Bulletin, 54 (1): 20-37. doi: 10.1007/s11434-008-0543-7
      [37] Schubert, J.K., Bottjer, D.J., 1995. Aftermath of the Permian-Triassic Mass Extinction Event: Paleoecology of Lower Triassic Carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116(1-2): 1-39. doi: 10.1016/0031-0182(94)00093-N
      [38] Stanley, S.M., Hardie, L.A., 1998. Secular Oscillation in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144 (1-2): 3-19. doi: 10.1016/S0031-0182(98)00109-6
      [39] Sugisaki, R., Yamamoto, K., Adachi, M., 1982. Triassic Bedded Cherts in Central Japan are not Pelagic. Nature, 298: 644-645. doi: 10.1038/298644a0
      [40] Tong, J.N., 1997. Lower Triassic Sequence Stratigrphy of Chaoxian, Anhui. Acta Geoscientia Sinica, 18 (2): 215-219 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DQXB702.012&dbcode=CJFD&year=1997&dflag=pdfdown
      [41] Tong, J.N., Erwin, D.H., Zuo, J.X., et al., 2005. Lower Triassic Carbon Isotope Stratigraphy in Chaohu, Anhui: Implication to Biotic and Ecological Recovery. Albertina, 33: 75-76. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501005.htm
      [42] Tong, J.N., Hansen, J.H., Zhao, L.S., et al., 2005a. A GSSP Candidate of the Induan-Olenekian Boundary Stratigraphic Sequence of the West Pingdingshan Section in Chaohu, Anhui Province. Journal of Stratigraphy, 29 (2): 205-214 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200502018.htm
      [43] Tong, J.N., Zhao, L.S., Zuo, J.X., et al., 2005b. An Integrated Lower Triassic Sequence in Chaohu, Anhui Province. Earth Science—Journal of China University of Geosciences, 30 (1): 40-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501005.htm
      [44] Tong, J.N., Qiu, H.O., Zhao, L.S., et al., 2002. Lower Triassic Inorganic Carbon Isotope Excursion in Chaohu, Anhui Province, China. Earth Science—Journal of China University of Geosciences, 13 (2): 98-105. http://d.wanfangdata.com.cn/Periodical_dqkx-e200202002.aspx
      [45] Tong, J.N., Zakharov, Y.D., Orchard, M.J., et al., 2003. A Candidate of the Induan-Olenekian Boundary Stratotype in the Tethyan Region. Science in China (Series D), 46 (11): 1182-1200. doi: 10.1360/03yd0295
      [46] Tong, J.N., Zhou, X.G., Erwin, D.H., et al., 2006. Fossil Fishes from the Lower Triasssic of Majiashan Chaohu, Anhui Province, China. Journal of Paleontology, 80 (1) : 146-161. doi: 10.1666/0022-3360(2006)080[0146:FFFTI.T]2.0.CO; 2
      [47] Tong, J.N., Zhang, S.X., Zuo, J.X., et al., 2007a. Events during Early Recovery from the End-Permian Extinction. Global and Planetary Change, 55(1-3): 66-80. doi: 10.1016/j.gloplacha.2006.06.015
      [48] Tong, J.N., Zuo, J.N., Chen, Z.Q., 2007b. Early Triassic Carbon Isotope Excursions from South China: Proxies for Devastation and Restoration of Marine Ecosystems Following the End-Permian Mass Extinction. Geological Journal, 42 (3-4) : 371-389. doi: 10.1002/gj.1084
      [49] Turekian, K., Wedepohl, K.H., 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geol. Soc. Amer. Bull. , 72 (2): 175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO; 2
      [50] Whittaker, S.G., James, N.P., Kyser, T.K., 1994. Geochemistry of Synsedimentary Cements in Early Cambrian Reefs. Geochim. Cosmochim. Acta, 58 (24): 5567-5577. doi: 10.1016/0016-7037(94)90250-X
      [51] Wignall, P.B., Twitchett, R.J., 1996. Oceanic Anoxia and the End-Permian Mass Extinction. Science, 272 (5265): 1155. doi: 10.1126/science.272.5265.1155
      [52] Woods, A.D., Bottjer, D.J., Mutti, M., et al., 1999. Lower Triassic Large Sea-Floor Carbonate Cements: Their Origin and a Mechanism for the Prolonged Biotic Recovery from the End-Permian Mass Extinction. Geology, 27 (7): 645-648. doi: 10.1130/0091-7613(1999)027<0645:LTLSFC>2.3.CO; 2
      [53] Xie, S.C., Pancost, R.D., Huang, J.H., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 35 (12): 1083-1086. doi: 10.1130/G24224A.1
      [54] Yang, H., Zhang, S.X., Jiang, H.S., et al., 2006. Age and General Characteristics of Calcimicrobialite near the Permian-Triassic Boundary in Chongyang, Hubei Province. Earth Science—Journal of China University of Geosciences, 31 (2): 165-170 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx-e200602005
      [55] Yin, H.F., 1994. Advancements of Permian and Triassic Research. Advance in Earth Science, 9 (2): 1-9 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y1994/V9/I2/1
      [56] Yin, H.F., Feng, Q.L., Lai, X.L., et al., 2007. The Protracted Permo-Triassic Crisis and Multi-Episode Extinction around the Permian-Triassic Boundary. Global and Planetary Change, 55 (1-3): 1-20. doi: 10.1016/j.gloplacha.2006.06.005
      [57] Yin, H.F., Huang, S.J., Zhang, K.X., et al., 1989. Volcanism at the Permian-Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63 (2): 168-181 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/19894/3001439941.html
      [58] Zhang, Z.B., Chen, Z.D., Liu, L.S., et al., 1999. Theory and Applications of Oceanographical Chemistry. Ocean Press, Beijing (in Chinese).
      [59] Zhao, L.S., Orchard, M.J., Tong, J.N., et al., 2007. Lower Triassic Cnodont Squence in Chaohu, Anhui Province, China and Its Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 24-38. doi: 10.1016/j.palaeo.2006.11.032
      [60] Zhao, L.S., Tong, J.N., Oechard, M.J., et al., 2005. Lower Triassic Conodont Zonations of Chaohu Area, Anhui Province and Their Global Correlation. Earth Sicence—Journal of China University of Geosciences, 30 (5): 623-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200505015.htm
      [61] Zhao, L.S., Tong, J.N., Orchard, M., 2005. Study on the Lower Triassic Conodont Sequence and the Induan-Olenekian Boundary in Chaohu, Anhui Province. China University of Geosciences Press, Wuhan.
      [62] Zhao, L.S., Tong, J.N., Sun, Z.M., et al., 2008a. Detailed Lower Triassic Conodont Biostratigraphy and Its Implications at the GSSP Candidate of the Induan-Olenekian Boundary in Chaohu, Anhui Provinces. Progress in Natural Science, 18(1): 79-90. doi: 10.1016/j.pnsc.2007.07.001
      [63] Zhao, L.S., Tong, J.N., Zhang, S.X., et al., 2008b. An Update of Conodonts in the Induan-Olenekian Boundary Strata at West Pingdingshan Section, Chaohu, Anhui Province. Journal of China University of Geosciences, 19 (3): 207-216. doi: 10.1016/S1002-0705(08)60040-0
      [64] Zhao, L.S., Tong, J.N., Zuo, J.X., 2003. Lower Triassic Conodonts Biostratigraphical Sequence at West Pingdingshan Section, Chaohu, Anhui Province, China. Earth Science—Journal of China University of Geosciences, 28 (4): 414-418 (in Chinese with English abstract).
      [65] Zhao, L.S., Wu, Y.B., Hu, Z.C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian-Triassic. Earth Science—Journal of China University of Geosciences, 34 (5): 725-732 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.080
      [66] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2003. Carbon and Oxygen Isotope Stratigraphic Correlation and Its Palaeoenviroment Significance during the Lower Triassic, Chauhu, Anhui Province, China. Geology Geochemistry, 31(3): 26-33 (in Chinese with English abstract).
      [67] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2004. Carbon and Oxygen Isotope Stratigraphy of the Lower Triassic at the North Pingdingshan Section in Chaohu, Anhui Province, China. Journal of Stratigraphy, 28 (1): 26-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200401003.htm
      [68] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2006. Evolutional Characteristics of Carbon Isotope Compositions from the Lower Triassic Marine Carbonates, Lower Yangtze Region, South China. Sciences in China (Series D), 49 (3): 225-241. doi: 10.1007/s11430-006-0225-8
      [69] 柴之芳, 马淑兰, 毛雪英, 等, 1986. 浙江长兴二叠系/三叠系界线剖面的元素地球化学特征. 地质学报, (2): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198602003.htm
      [70] 陈剑波, 赵来时, 陈中强, 等, 2012. 浙江煤山牙形石微区原位REE组成及古环境意义. 地球科学——中国地质大学学报, 37(1): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201006.htm
      [71] 丁梅华, 1983. 安徽巢县马家山早三叠世牙形石及其地层意义. 地球科学——武汉地质学院学报, (2): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198302004.htm
      [72] 冯增昭, 鲍志东, 李尚武, 等, 1997. 中国南方早中三叠世岩相古地理. 北京: 石油工业出版社.
      [73] 郭佩霞, 徐家聪, 1980. 对安徽巢县青龙群时代的认识. 地层学杂志, 4(4): 310-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198004008.htm
      [74] 何锦文, 芮琳, 柴之芳, 等, 1987. 浙江长兴煤山地区晚二叠世末、早三叠世初的火山活动. 地层学杂志, 11(3): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198703004.htm
      [75] 侯生秀, 1987. 安徽铜陵发现火山碎屑岩. 地层学杂志, 11(1): 75. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198701011.htm
      [76] 李金华, 丁保良, 1981. 下扬子地区中下三叠统的分界. 地层学杂志, 5(1): 70-75.
      [77] 李尚武, 吴胜和, 1998. 安徽巢县中下三叠统青龙群岩石特征及沉积环境分析. 见: 冯增昭等, 下扬子地区中下三叠统青龙群岩相古地理研究. 昆明: 云南科技出版社, 82-91.
      [78] 李双应, 1996. 安徽巢县南陵湖组火山碎屑流沉积物的发现. 地层学杂志, 20(4): 277-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ604.005.htm
      [79] 李玉成, 周忠泽, 2002. 华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭. 地质地球化学, 30(1): 57-63. doi: 10.3969/j.issn.1672-9250.2002.01.010
      [80] 芮琳, 江纳言, 1984. 苏浙皖地区二叠纪末、三叠纪初的岩相和生物相. 古生物学报, 23(3): 286-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198403003.htm
      [81] 童金南, 1997. 安徽巢县下三叠统层序地层研究. 地球学报, 18(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB702.012.htm
      [82] 童金南, Hansen, H.J., 赵来时, 等, 2005a. 印度阶-奥伦尼克阶界线层型候选剖面——安徽巢湖平顶山西坡剖面地层序列. 地层学杂志, 29(2): 205-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200502018.htm
      [83] 童金南, 赵来时, 左景勋, 等, 2005b. 安徽巢湖地区下三叠统综合层序. 地球科学——中国地质大学学报, 30(1): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501005.htm
      [84] 杨浩, 张素新, 江海水, 等, 2006. 湖北崇阳二叠纪-三叠纪之交钙质微生物岩的时代及基本特征. 地球科学——中国地质大学学报, 31 (2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602003.htm
      [85] 殷鸿福, 1994. 二叠系-三叠系研究进展. 地球科学进展, 9(2): 1-9. doi: 10.3321/j.issn:1001-8166.1994.02.001
      [86] 殷鸿福, 黄思骥, 张克信, 等, 1989. 华南二叠纪-三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63(2): 168-181.
      [87] 张正斌, 陈镇东, 刘莲生, 等, 1999. 海洋化学原理和应用. 北京: 海洋出版社.
      [88] 赵来时, 童金南, Orchard, M.J., 等, 2005. 安徽巢湖地区下三叠统牙形石生物地层分带及其全球对比. 地球科学——中国地质大学学报, 30(5): 623-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505015.htm
      [89] 赵来时, 童金南, 左景勋, 2003. 安徽巢湖平顶山下三叠统牙形石生物地层序列. 地球科学——中国地质大学学报, 28(4): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304009.htm
      [90] 赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠-三叠系全球层型剖面第一幕绝灭事件为例. 地球科学——中国地质大学学报, 34(5): 725-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905004.htm
      [91] 左景勋, 童金南, 邱海鸥, 等, 2003. 巢湖地区碳氧同位素地层对比及其生态环境意义. 地质地球化学, 31(3): 26-34. doi: 10.3969/j.issn.1672-9250.2003.03.005
      [92] 左景勋, 童金南, 邱海鸥, 等, 2004. 巢湖平顶北坡剖面下三叠统碳氧同位素地层学. 地层学杂志, 28(1): 35-40. doi: 10.3969/j.issn.0253-4959.2004.01.004
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  4669
    • HTML全文浏览量:  158
    • PDF下载量:  1205
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-07-17
    • 刊出日期:  2013-05-15

    目录

      /

      返回文章
      返回