• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    麦夸特算法在X射线衍射物相定量分析中的应用

    曾蒙秀 宋友桂

    曾蒙秀, 宋友桂, 2013. 麦夸特算法在X射线衍射物相定量分析中的应用. 地球科学, 38(2): 431-440. doi: 10.3799/dqkx.2013.043
    引用本文: 曾蒙秀, 宋友桂, 2013. 麦夸特算法在X射线衍射物相定量分析中的应用. 地球科学, 38(2): 431-440. doi: 10.3799/dqkx.2013.043
    ZENG Meng-xiu, SONG You-gui, 2013. Application of the Levenberg-Marquardt Algorithm to X-Ray Diffraction Quantitative Phase Analysis. Earth Science, 38(2): 431-440. doi: 10.3799/dqkx.2013.043
    Citation: ZENG Meng-xiu, SONG You-gui, 2013. Application of the Levenberg-Marquardt Algorithm to X-Ray Diffraction Quantitative Phase Analysis. Earth Science, 38(2): 431-440. doi: 10.3799/dqkx.2013.043

    麦夸特算法在X射线衍射物相定量分析中的应用

    doi: 10.3799/dqkx.2013.043
    基金项目: 

    国家自然科学基金项目 40972230

    国家自然科学基金项目 41172166

    详细信息
      作者简介:

      曾蒙秀(1987-),女,硕士研究生,从事环境矿物学与环境演变研究.E-mail: zengmengxiu@163.com

      通讯作者:

      宋友桂,E-mail: syg@ieecas.cn

    • 中图分类号: P575.5

    Application of the Levenberg-Marquardt Algorithm to X-Ray Diffraction Quantitative Phase Analysis

    • 摘要: 常规的X射线衍射物相定量分析方法有各自的优点,但这些方法往往也存在一些不足.在实际应用中迫切需要一种简便、高效的普适性多物相无标样定量分析方法.选择麦夸特算法、粒子群算法、遗传算法、差分进化算法这4种迭代搜索领域的经典算法构建了基于非线性模型参数估计方法的4模冗余系统,以19个配制的4相样品中各相“前三强线”的积分强度之和作为计算的原始数据,通过Matlab软件进行了含量计算.理论分析及试验结果表明,运用麦夸特算法进行定量分析具有更小的计算复杂度、更快的收敛速度及更好的全局搜索能力,各相含量的计算值与配比值的绝对误差在5%以内的约占总计算量的83%.为了验证该算法,计算了昭苏黄土剖面82个混合样品及青海湖二郎剑钻孔359个混合样品中刚玉的含量,刚玉含量的配比值与计算值的相关性分别达到0.83和0.63,刚玉含量的误差超过5%的分别占总计算量的4.88%和9.75%.基于麦夸特算法的定量分析方法在批量化处理多物相定量中具有效率高、可操作性强、准确度高等优点.

       

    • 图  1  非线性模型参数估计方法的4模冗余系统示意

      Fig.  1.  The process of 4 modular redundant systems based on nonlinear model parameters estimation method

      图  2  4种矿物的X射线衍射谱与标准卡片中衍射谱的对比

      Fig.  2.  Comparison of 4 kinds of minerals' X-ray diffraction patterns with standard card

      图  3  4个混合样品的X射线衍射谱

      Fig.  3.  X-ray diffraction patterns of 4 samples in 19 prepared samples

      图  4  各物相含量的计算值与配比值之间的绝对误差

      Fig.  4.  The absolute error between matched value and computed results of 4 kinds minerals in 19 samples

      图  5  各样品总质量的配比值与计算值的对比

      Fig.  5.  Comparison between the matched value and the calculated value of 19 samples' total mass

      图  6  刚玉的计算值与配比值的相关分析

      Fig.  6.  Relationship of calculated value and matched value of Corundum in ZSP section and Erlangjian drilling

      表  1  4模冗余系统的计算结果

      Table  1.   The computed results of the 4 modular redundant system

      项目 Q1 Q2 Q3 Q4
      收敛指标 1E-10 1E-10 1E-10 1E-10
      参数设置 - 轮盘选择法 k=2
      α=0.7 α=0.7 C1=2.05
      β=0.85 β=0.85 C2=2.05
      均方差 1.521E-02 1.521E-02 1.521E-02 2.658E-02
      残差平方和 2.775E-03 2.775E-03 2.775E-03 8.479E-03
      时间开销(s) 0.47 0.78 0.219 0.188
      系数($\hat \theta $) 3.693E-04 6.931E-04 3.693E-04 4.996E-04
      4.771 9E-05 4.772 0E-05 4.771 9E-05 4.226 4E-05
      3.978 0E-05 3.977 89E-05 3.978 0E-05 5.262 1E-05
      5.208 2E-05 5.207 7E-05 5.208 2E-05 2.843 8E-07
      下载: 导出CSV
    • [1] Alexander, L., Klug, H. P., 1948. Basic Aspects of X-Ray Absorption in Quantitative Diffraction Analysis of Powder Mixtures. Analyses Chemical, 20(10): 886-894. doi: 10.1021/ac60022a002
      [2] Al-Jaroudi, S.S., Ul-Hamid, A., Mohammed, A.R.I., et al., 2007. Use of X-Ray Powder Diffraction for Quantitative Analysis of Carbonate Rock Reservoir Samples. Powder Technology, 175(3): 115-121. doi: 10.1016/j.powtec.2007.01.013
      [3] An, Z.S., Ai, L., Song, Y.G., et al., 2006. Lake Qinghai Scientific Drilling Project. Scientific Drilling, 2: 20-22. doi: 10.2204/iodp.sd.1.05.2006
      [4] Chu, G., Zhai, X.J., Fu, Y., et al., 2004. The Multi-Peak Match Intensity Ratio Method for X-Ray Diffraction Quantitative Phase Analysis. Journal of Instrumental Analysis, 23(1): 48-51 (in Chinese with English abstract). http://www.labpku.com/UploadFiles/2014-01/admin/2014011613351765553.pdf
      [5] Fan, J.Y., 2005. A Modified Levenberg-Marquardt Algorithm for Singular System of Nonlinear Equations. Journal of Computational Mathematics, 21(5): 625-636. doi: cnki:ISSN:0254-9409.0.2003-05-007
      [6] Fang, Q., Chen, D.Z., Yu, H.J., et al., 2004. The Application of Differential Evolution Algorithm Based on Dugenic Strategy and ITS in Chemical Engineering. Journal of Chemical Industry and Engineering, 55(4): 598-602 (in Chinese with English abstract).
      [7] Ge, J.K., Qiu, Y.H., Wu, C.M., et al., 2008. A Research Review on Genetic Algorithms. Application Research of Computers, 25(10): 2911-2916 (in Chinese with English abstract).
      [8] Hill, R.J., Howard, C.J., 1987. Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method. Journal of Application Crystal, 20: 467-474. doi: 10.1107/S0021889887086199
      [9] Jin, Y., Sun, X.S., Xue, Q., 2008. X-Ray Diffraction Analysis Technology. National University of Defence Technology Press, Beijing, 193-203 (in Chinese).
      [10] Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks. IEEE Service Center, Piscataway, 4: 1942-1948. doi: 10.1109/ICNN.1995.488968
      [11] Li, G., Ma, H.W., Wang, H.L., et al., 2011. Modal Analysis of Montmorillonite in Bentonites Using Phase Mixing Equation: A Comparative Study. Earth Science Frontiers, 18(1): 216-221 (in Chinese with English abstract). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.948.6939&rep=rep1&type=pdf
      [12] Liu, S.Z., 2001. The Tactics Construction of Quantitative Phase Analysis by X-Ray Diffraction. Rock and Mineral Analysis, 20(2): 81-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200102000.htm
      [13] Ma, L.D., 1996. A New Method of X-Ray Powder Diffraction-Rietveld Whole Pattern Fitting. Progrress in Physics, 16(2): 251-265 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXJ602.004.htm
      [14] Song, Y.G., Shi, Z.T., Fang, X.M., et al., 2010. Loess Magnetic Properties in the Ili Basin and Their Correlation with the Chinese Loess Plateau. Science China Earth Sciences, 53(3): 419-431. doi: 10.1007/s11430-010-0011-5
      [15] Storn, R., Price, K., 1997. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4): 341-359. doi: 10.1023/A:1008202821328
      [16] Tongji University Computing Mathematics Staff Room, 2004. Modern Numerical Mathematics and Computation. Tongji University Press, Shanghai, 78-89 (in Chinese).
      [17] Wan, H.B., Liao, L.B., 2009. Quantitative Phase Analysis of Montmorillonite in Bentonite. Journal of the Chinese Ceramic Society, 37(12): 2055-2060 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXYB200912018.htm
      [18] Wiles, D.B., Young, R.A., 1981. A New Computer Program for Rietveld Analysis of X-Ray Powder Diffraction Patterns. Journal of Applied Crystallography, 14: 149-151. doi: 10.1107/S0021889881008996
      [19] Xie, X.F., Zhang, W.J., Yang, Z.L., 2003. Overview of Particle Swam Optimization. Control and Decision, 18(2): 129-134 (in Chinese with English abstract). http://www.scientific.net/AMM.543-547.1597
      [20] Xu, J.L., Li, Y.W., Chen, T.S., 2009. Rietveld Method Used in Quantify the Content of Solid Solution in Mullite. Refractories, 43(4): 303-305 (in Chinese with English abstract).
      [21] Zou, L.C., Wang, S.M., 2011. Empirical Creep Model Used in Slipped Zone Soil of Gushubao Landlide. Journal of Engineering Geology, 19(1): 59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201101012.htm
      [22] 储刚, 翟秀静, 符岩, 等, 2004. X射线衍射多谱峰匹配强度比定量相分析方法. 分析测试学报, 23(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200401012.htm
      [23] 方强, 陈德钊, 俞欢军, 等, 2004. 基于优进策略的差分进化算法及其化工应用. 化工学报, 55(4): 598-602. doi: 10.3321/j.issn:0438-1157.2004.04.019
      [24] 葛继科, 邱玉辉, 吴春明, 等, 2008. 遗传算法研究综述. 计算机应用研究, 25(10): 2911-2916. doi: 10.3969/j.issn.1001-3695.2008.10.008
      [25] 晋勇, 孙小松, 薛屺, 2008. X射线衍射分析技术. 北京: 国防科技大学出版社, 193-203.
      [26] 李歌, 马鸿文, 王红丽, 等, 2011. 相混合计算法确定蒙脱石含量的对比研究. 地学前缘, 18(1): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101031.htm
      [27] 刘仕子, 2001. X射线衍射定量相分析的策略架构. 岩矿测试, 20(2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200102000.htm
      [28] 马礼敦, 1996. X射线粉末衍射的新起点——Rietveld全谱拟合. 物理学进展, 16(2): 251-265. doi: 10.3321/j.issn:1000-0542.1996.02.005
      [29] 同济大学计算数学教研室, 2004. 现代数值数学和计算. 上海: 同济大学出版社, 78-89.
      [30] 万红波, 廖立兵, 2009. 膨润土中蒙脱石物相的定量分析. 硅酸盐学报, 37(12): 2055-2060. doi: 10.3321/j.issn:0454-5648.2009.12.017
      [31] 谢晓峰, 张文俊, 杨之廉, 2003. 微粒群算法综述. 控制与决策, 18(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200302000.htm
      [32] 许聚良, 李亚伟, 陈汀水, 2009. Rietveld全谱拟合法测定莫来石固溶体含量. 耐火材料, 43(4): 303-305. doi: 10.3969/j.issn.1001-1935.2009.04.019
      [33] 邹良超, 王世梅, 2011. 古树包滑坡滑带土蠕变经验模型. 工程地质学报, 19(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201101012.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  2479
    • HTML全文浏览量:  99
    • PDF下载量:  203
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-02-25
    • 刊出日期:  2013-02-01

    目录

      /

      返回文章
      返回