Application of the Levenberg-Marquardt Algorithm to X-Ray Diffraction Quantitative Phase Analysis
-
摘要: 常规的X射线衍射物相定量分析方法有各自的优点,但这些方法往往也存在一些不足.在实际应用中迫切需要一种简便、高效的普适性多物相无标样定量分析方法.选择麦夸特算法、粒子群算法、遗传算法、差分进化算法这4种迭代搜索领域的经典算法构建了基于非线性模型参数估计方法的4模冗余系统,以19个配制的4相样品中各相“前三强线”的积分强度之和作为计算的原始数据,通过Matlab软件进行了含量计算.理论分析及试验结果表明,运用麦夸特算法进行定量分析具有更小的计算复杂度、更快的收敛速度及更好的全局搜索能力,各相含量的计算值与配比值的绝对误差在5%以内的约占总计算量的83%.为了验证该算法,计算了昭苏黄土剖面82个混合样品及青海湖二郎剑钻孔359个混合样品中刚玉的含量,刚玉含量的配比值与计算值的相关性分别达到0.83和0.63,刚玉含量的误差超过5%的分别占总计算量的4.88%和9.75%.基于麦夸特算法的定量分析方法在批量化处理多物相定量中具有效率高、可操作性强、准确度高等优点.Abstract: The conventional X-ray diffraction quantitative phase analysis methods are over-reliant on pure standard substances, working curve and K value. If the phases are more than 3, the fitting results are not good by Rietveld method. In addition, the versatility of quantitative methods with large calculation and fussy operation also need to be expanded. A new non-standard quantitative phase analysis method based on nonlinear model parameters estimation method of 4 modular redundant systems that consist of Levenberg-Marquardt, Particle Swarm Optimization, Genetic Algorithm and Differential Evolution is proposed. Taking the content of 4 phases in 19 mixture powder as the original data, performing the whole process of computing in the Matlab environment, the experimental results show that the Levenberg-Marquardt algorithm is an effective tool with smaller computing complexity, faster convergence speed and better global searching capability and other advantages. It is no need to add reference phase to the samples, which overcomes the problems that all the samples must be determined more than one time, and the method with no need for K value which enlarges the applications and enhances the accuracy of the X-ray diffraction method for quantitative phase analysis of the mixture samples. Replacing the conventional specific single spectrum line intensity or intensity rations by the sum of the integrated intensity of the top three peaks can improve the precision of the X-ray diffraction quantitative phase analysis. With this method, the content of Corundum in 82 samples of Zhaosu section in Ili basin and 359 samples in ELJ drilling core of ICDP in Qinghai Lake are computed. The correlation coefficient of the match ratio and the calculated value of Corundum in Zhaosu section and ELJ drilling core have reached 0.83 and 0.63. Practice has proved that it is a feasible, effective, rapid and correct technique of quantitative analysis of minerals, and the stability is satisfactory. It can be used for quantifying the phases in more than 9-phase materials.
-
表 1 4模冗余系统的计算结果
Table 1. The computed results of the 4 modular redundant system
项目 Q1 Q2 Q3 Q4 收敛指标 1E-10 1E-10 1E-10 1E-10 参数设置 - 轮盘选择法 k=2 α=0.7 α=0.7 C1=2.05 β=0.85 β=0.85 C2=2.05 均方差 1.521E-02 1.521E-02 1.521E-02 2.658E-02 残差平方和 2.775E-03 2.775E-03 2.775E-03 8.479E-03 时间开销(s) 0.47 0.78 0.219 0.188 系数($\hat \theta $) 3.693E-04 6.931E-04 3.693E-04 4.996E-04 4.771 9E-05 4.772 0E-05 4.771 9E-05 4.226 4E-05 3.978 0E-05 3.977 89E-05 3.978 0E-05 5.262 1E-05 5.208 2E-05 5.207 7E-05 5.208 2E-05 2.843 8E-07 -
[1] Alexander, L., Klug, H. P., 1948. Basic Aspects of X-Ray Absorption in Quantitative Diffraction Analysis of Powder Mixtures. Analyses Chemical, 20(10): 886-894. doi: 10.1021/ac60022a002 [2] Al-Jaroudi, S.S., Ul-Hamid, A., Mohammed, A.R.I., et al., 2007. Use of X-Ray Powder Diffraction for Quantitative Analysis of Carbonate Rock Reservoir Samples. Powder Technology, 175(3): 115-121. doi: 10.1016/j.powtec.2007.01.013 [3] An, Z.S., Ai, L., Song, Y.G., et al., 2006. Lake Qinghai Scientific Drilling Project. Scientific Drilling, 2: 20-22. doi: 10.2204/iodp.sd.1.05.2006 [4] Chu, G., Zhai, X.J., Fu, Y., et al., 2004. The Multi-Peak Match Intensity Ratio Method for X-Ray Diffraction Quantitative Phase Analysis. Journal of Instrumental Analysis, 23(1): 48-51 (in Chinese with English abstract). http://www.labpku.com/UploadFiles/2014-01/admin/2014011613351765553.pdf [5] Fan, J.Y., 2005. A Modified Levenberg-Marquardt Algorithm for Singular System of Nonlinear Equations. Journal of Computational Mathematics, 21(5): 625-636. doi: cnki:ISSN:0254-9409.0.2003-05-007 [6] Fang, Q., Chen, D.Z., Yu, H.J., et al., 2004. The Application of Differential Evolution Algorithm Based on Dugenic Strategy and ITS in Chemical Engineering. Journal of Chemical Industry and Engineering, 55(4): 598-602 (in Chinese with English abstract). [7] Ge, J.K., Qiu, Y.H., Wu, C.M., et al., 2008. A Research Review on Genetic Algorithms. Application Research of Computers, 25(10): 2911-2916 (in Chinese with English abstract). [8] Hill, R.J., Howard, C.J., 1987. Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method. Journal of Application Crystal, 20: 467-474. doi: 10.1107/S0021889887086199 [9] Jin, Y., Sun, X.S., Xue, Q., 2008. X-Ray Diffraction Analysis Technology. National University of Defence Technology Press, Beijing, 193-203 (in Chinese). [10] Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks. IEEE Service Center, Piscataway, 4: 1942-1948. doi: 10.1109/ICNN.1995.488968 [11] Li, G., Ma, H.W., Wang, H.L., et al., 2011. Modal Analysis of Montmorillonite in Bentonites Using Phase Mixing Equation: A Comparative Study. Earth Science Frontiers, 18(1): 216-221 (in Chinese with English abstract). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.948.6939&rep=rep1&type=pdf [12] Liu, S.Z., 2001. The Tactics Construction of Quantitative Phase Analysis by X-Ray Diffraction. Rock and Mineral Analysis, 20(2): 81-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200102000.htm [13] Ma, L.D., 1996. A New Method of X-Ray Powder Diffraction-Rietveld Whole Pattern Fitting. Progrress in Physics, 16(2): 251-265 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXJ602.004.htm [14] Song, Y.G., Shi, Z.T., Fang, X.M., et al., 2010. Loess Magnetic Properties in the Ili Basin and Their Correlation with the Chinese Loess Plateau. Science China Earth Sciences, 53(3): 419-431. doi: 10.1007/s11430-010-0011-5 [15] Storn, R., Price, K., 1997. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4): 341-359. doi: 10.1023/A:1008202821328 [16] Tongji University Computing Mathematics Staff Room, 2004. Modern Numerical Mathematics and Computation. Tongji University Press, Shanghai, 78-89 (in Chinese). [17] Wan, H.B., Liao, L.B., 2009. Quantitative Phase Analysis of Montmorillonite in Bentonite. Journal of the Chinese Ceramic Society, 37(12): 2055-2060 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXYB200912018.htm [18] Wiles, D.B., Young, R.A., 1981. A New Computer Program for Rietveld Analysis of X-Ray Powder Diffraction Patterns. Journal of Applied Crystallography, 14: 149-151. doi: 10.1107/S0021889881008996 [19] Xie, X.F., Zhang, W.J., Yang, Z.L., 2003. Overview of Particle Swam Optimization. Control and Decision, 18(2): 129-134 (in Chinese with English abstract). http://www.scientific.net/AMM.543-547.1597 [20] Xu, J.L., Li, Y.W., Chen, T.S., 2009. Rietveld Method Used in Quantify the Content of Solid Solution in Mullite. Refractories, 43(4): 303-305 (in Chinese with English abstract). [21] Zou, L.C., Wang, S.M., 2011. Empirical Creep Model Used in Slipped Zone Soil of Gushubao Landlide. Journal of Engineering Geology, 19(1): 59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201101012.htm [22] 储刚, 翟秀静, 符岩, 等, 2004. X射线衍射多谱峰匹配强度比定量相分析方法. 分析测试学报, 23(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200401012.htm [23] 方强, 陈德钊, 俞欢军, 等, 2004. 基于优进策略的差分进化算法及其化工应用. 化工学报, 55(4): 598-602. doi: 10.3321/j.issn:0438-1157.2004.04.019 [24] 葛继科, 邱玉辉, 吴春明, 等, 2008. 遗传算法研究综述. 计算机应用研究, 25(10): 2911-2916. doi: 10.3969/j.issn.1001-3695.2008.10.008 [25] 晋勇, 孙小松, 薛屺, 2008. X射线衍射分析技术. 北京: 国防科技大学出版社, 193-203. [26] 李歌, 马鸿文, 王红丽, 等, 2011. 相混合计算法确定蒙脱石含量的对比研究. 地学前缘, 18(1): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101031.htm [27] 刘仕子, 2001. X射线衍射定量相分析的策略架构. 岩矿测试, 20(2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200102000.htm [28] 马礼敦, 1996. X射线粉末衍射的新起点——Rietveld全谱拟合. 物理学进展, 16(2): 251-265. doi: 10.3321/j.issn:1000-0542.1996.02.005 [29] 同济大学计算数学教研室, 2004. 现代数值数学和计算. 上海: 同济大学出版社, 78-89. [30] 万红波, 廖立兵, 2009. 膨润土中蒙脱石物相的定量分析. 硅酸盐学报, 37(12): 2055-2060. doi: 10.3321/j.issn:0454-5648.2009.12.017 [31] 谢晓峰, 张文俊, 杨之廉, 2003. 微粒群算法综述. 控制与决策, 18(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200302000.htm [32] 许聚良, 李亚伟, 陈汀水, 2009. Rietveld全谱拟合法测定莫来石固溶体含量. 耐火材料, 43(4): 303-305. doi: 10.3969/j.issn.1001-1935.2009.04.019 [33] 邹良超, 王世梅, 2011. 古树包滑坡滑带土蠕变经验模型. 工程地质学报, 19(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201101012.htm