Raman Spectroscopic Study on Hydrogen Bond of Water Molecules in Natural Inclusions under the Conditions of Freezing
-
摘要: 水的拉曼图谱实际就是带氢键作用的OH伸缩振动峰(包括对称伸缩振动峰和反对称伸缩振动峰)和不带氢键作用的OH对称伸缩振动峰(包括对称伸缩振动峰和反对称伸缩振动峰)的叠加包络线,通过对流体中水的拉曼图谱的分析可以反映流体中氢键作用的强弱.因此,用Renishaw MK1-1000型显微激光拉曼探针原位分析了冷冻条件下天然的流体包裹体腔内流体水分子的氢键作用.研究表明,在冷冻条件下,水分子运动以带氢键作用的伸缩振动为主,同时还有微弱的非氢键作用的伸缩振动;随着温度的降低,流体中水分子的氢键作用不断地增强;在-130~-180 ℃区间氢键作用增强的趋势明显加大,暗示流体性质在此温度区间可能发生了突变.Abstract: The Raman spectroscopy of water is combined by O-H stretching vibration peaks with hydrogen bond and O-H stretching vibration peaks with no hydrogen bond in 3 100-3 700 cm-1, which all include symmetric and anti-symmetric stretching fundamentals. So the intensity of hydrogen bonding of H2O molecules in fluid can be obtained by studying on the Raman spectroscopy of water. The hydrogen bonding of water in natural fluid inclusions under the condition of freezing is studied by in-site analysis with a Renishaw MK1-1000 type laser Raman microprobe. The results show that the stretching vibration with hydrogen bond between different H2O molecules is the main movement of H2O molecules below 0 ℃, and the weak stretching vibration with no hydrogen bond in the same molecules is also found in the meantime. The hydrogen bonding of water become stronger with the descent of temperature, and the property of fluid might be discontinuous at -130 to -180 ℃.
-
Key words:
- condition of freezing /
- fluid inclusion /
- hydrogen bonding /
- Raman spectroscopy /
- homogeneous fluid /
- geochemistry
-
表 1 不同温度下的流体拉曼图谱特征(以两峰拟合后的特征)
Table 1. Raman spectra of fluid fitted by two peaks under different experimental temperatures
测试温度(℃) 主峰 次峰 拉曼位移(cm-1) 拉曼强度(a.u.) 半高宽(cm-1) 拉曼位移(cm-1) 拉曼强度(a.u.) 半高宽(cm-1) -30 3 106.0 771.70 190.88 3 335.0 367.88 215.20 -80 3 095.2 965.98 161.96 3 315.6 367.16 240.85 -130 3 085.5 1 597.00 145.95 3 298.0 464.57 244.29 -180 3 069.1 2 490.50 57.71 3 136.6 673.61 541.49 表 2 不同温度区间的流体拉曼参数变化特征(以两峰拟合后的特征)
Table 2. Raman parameters of fluid in different temperature zones
温度区间(℃) 主峰 次峰 △ひmax(cm-1) △I (a.u.) △FWHH(cm-1) △ひmax(cm-1) △I(a.u.) △FWHH(cm-1) -30~-80 10.80 194.28 28.92 19.40 0.62 25.65 -80~-130 9.70 627.02 16.01 17.60 97.39 3.44 -130~-180 16.40 892.50 88.24 161.40 209.04 297.20 注:△I为与两个端元温度相对应的流体拉曼强度之差;△ひmax为与两个端元温度相对应的流体拉曼位移之差;△FWHH为两个端元温度相对应的流体半高宽之差. -
[1] Burke, E.A.T., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8 [2] Carey, D.M., Korenowski, G.M., 1998. Measurement of the Raman Spectrum of Liquid Water. J. Chem. Phys. , 108(7): 2669-2675. doi: 10.1063/1.475659 [3] Chen, J.Y., Zheng, H.F., Zeng, Y.S., 2002. Raman Spectroscopic Study on Hydrogen Bond of Water Molecules in Synthetic Inclusions under High Temperature. Rock and Mineral Analysis, 21(3): 166-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200203001.htm [4] Frantz, J.D., Dubessy, J., Mysen, B., 1993. An Optical Cell for Raman Spectroscopic Studies of Supercritical Fluids and Its Application to the Study of Water to 500 ℃ and 2 000 bar. Chem. Geol. , 106(1-2): 9-26. doi: 10.1016/0009-2541(93)90163-D [5] Hoffmann, M.M., Conradi, S., 1997. Are There Hydrogen Bonds in Supercritical Water? J. Am. Chem. Soc. , 119(16): 3811-3817. doi: 10.1021/ja964331g [6] Hu, S.M., Zhang, R.H., Zhang, X.T., 2000. A Study of Near and Supercritical Fluids Using Diamond Anvil Cell and In-Situ FTIR Spectroscopy. Acta Geological Sinica, 74(2): 412- 417. doi: 10.1111/j.1755-6724.2000.tb00485.x [7] Jiang, C.F., Wang, Y., Zhang, C.S., et al., 2002. Application of Hydrogen-Bonding Association Model to the Liquid-Liquid Equilibrium of Water-Soluble Polymer Solution. Journal of Sichuan University (Engineering Science Edition), 34(2): 57-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH200202014.htm [8] Jong, P.H.K., Neilson, G.W., 1997. Hydrogen-Bond Structure in Aqueous Solution of Sodium Chloride at Sub-and Supercritical Conditions. J. Chem. Phys. , 107(20): 8577- 8585. doi: 10.1063/1.475010 [9] Naomichi, A., Mitsuo, I., 1978. Effects of Hydrogen Bonding on the Raman Intensities of Methanol, Ethanol and Water. Journal of Raman Spectroscopy, 7(3): 161-167. doi: 10.1002/jrs.1250070311 [10] Ni, P., Rao, B., Ding, J.Y., et al., 2003. Studies on the Synthetic Fluid Inclusions and Their Application to Laser Raman Spectrum Analysis Field. Acta Petrologica Sinica, 19(2): 319-326 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200302014.aspx [11] Ohtaki, H., Radnai, T., Yamaguchi, T., 1997. Structure of Water under Subcritical and Supercritical Conditions Studied by Solution X-Ray Diffraction. Chem. Soc. Rev. , 26(1): 41-51. doi: 10.1039/CS9972600041 [12] Samson, I.M., Walker, R.T., 2000. Cryogenic Raman Spectroscopic Studies in the System NaCl-CaCl2-H2O and Implications for Low-Temperature Phase Behavior in Aqueous Fluid Inclusions. The Canadian Mineralogist, 38(1): 35-43. doi:0.2113/gscanmin.38.1.35 [13] Wang, S.J., Shen, J.D., Hao, M.L., et al., 2003. Kinetics of Natural Gas Hydrate Directly Formed from Ice And Natural Gas. Modern Chemical Industry, 23(5): 32-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDHG200305008.htm [14] Yu, J.Y., Zhou, Q., 1994. Near IR FT-Raman Spectroscopic Measurement of Distilled Water and Heavy Water. Chinese Journal of Light Scattering, 6(2): 81-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSSX402.003.htm [15] Zhang, B.L., Wang, C.H., 1997. A Preliminary Simulation Experiment on Regeneration Mechanisms of Gold Placers in Permafrost. Journal of Glaciology and Geocryology, 19(4): 334-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT704.007.htm [16] Zhang, Z.L., 2003. Study on Raman Spectrometric Characters of Fluid Inclusions of Tongchang Porphyry Copper Deposit, Dexing County of Jiangxi Province, under the Condition of Non-Common Temperature and Pressure (Dissertation). China University of Geosciences, Wuhan, 20-26 (in Chinese with English abstract). [17] Zhang, Z.L., Lv, X.B., Rao, B., 2008, Formational Mechanisms of Homogeneous Fluid and Boiling Fluid: Evidences from Synthetic Fluid Inclusions. Earth Science—Journal of China University of Geosciences, 33(2): 259-265(in Chinese with English abstract). doi: 10.3799/dqkx.2008.034 [18] Zou, S.Z., Chen, Y.X., Tian, Z.Q., et al., 1996. Studies on the Effects of Inorganic Ions and Their Concentrations on Raman Spectra of Water. Acta Physico-Chimica Sinica, 12(2): 130-135 (in Chinese with English abstract). doi: 10.3866/PKU.WHXB19960208 [19] 陈晋阳, 郑海飞, 曾贻善, 2002. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 21(3): 166-170. doi: 10.3969/j.issn.0254-5357.2002.03.002 [20] 江成发, 王敏, 张晨姝, 等, 2002. 氢键缔合模型在水溶性聚合物液-液平衡研究中的应用. 四川大学学报(工程科学版), 34(2): 57-63. doi: 10.3969/j.issn.1009-3087.2002.02.015 [21] 倪培, 饶冰, 丁俊英, 等, 2003. 人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用. 岩石学报, 19(2): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200302013.htm [22] 王胜杰, 沈建东, 郝妙莉, 等, 2003. 冰-气生成天然气水合物的动力学研究. 现代化工, 23(5): 32-35. doi: 10.3321/j.issn:0253-4320.2003.05.009 [23] 郁鉴源, 周群, 1994. 水和重水的拉曼光谱. 光散射学报, 6(2): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX402.003.htm [24] 张宝林, 王春鹤, 1997. 冻土带砂金矿再生机理的初步模拟实验研究. 冰川冻土, 19(4): 334-339. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.007.htm [25] 张振亮, 2003. 德兴铜厂铜矿非常温常压条件下的流体包裹体拉曼光谱特征及其成矿意义(硕士学位论文). 武汉: 中国地质大学, 20-26. [26] 张振亮, 吕新彪, 饶冰, 2008. 均匀流体和不均匀流体的形成机制: 来自合成流体包裹体的证据. 地球科学-中国地质大学学报, 33(2): 259-265. doi: 10.3321/j.issn:1000-2383.2008.02.015 [27] 邹受忠, 陈燕霞, 田中群, 等, 1996. 不同电解质体系水的拉曼光谱的研究. 物理化学学报, 12(2): 130-135. http://qikan.cqvip.com/Qikan/Article/Detail?id=2015346