Role of Sea Level Fluctuation on the Formation of Organic-Carbon-Rich Sediments in the Chihsian Formation in Sangzhi Area, Western Hunan Province
-
摘要: 湖南西部桑植地区中二叠统栖霞组地层旋回性明显,有机质也呈周期性变化.研究其有机质聚集堆积控制因素将有助于理解海平面变化在富有机碳沉积物形成过程中的作用.选择其中一个旋回作为研究目的层段,通过黄铁矿形态以及地球化学参数有机碳TOC、硫同位素、DOP以及微量元素的研究发现,初级生产力参数Ba、Ni、Cu和Zn的变化与TOC含量的变化一致,有机质聚集堆积主要受海洋表层初级生产力的控制,底部水体氧化还原条件与初级生产力有关.有机质的堆积最终归因于高频相对海平面变化,海平面快速上升带来丰富的营养物质,提高海洋表层生物生产力,海底有机质的分解消耗大量氧气,氧需求量的增加形成底部水体贫氧-厌氧环境.Abstract: The Middle Permian Chihsian Formation in Sangzhi area in western Hunan Province shows remarkable cyclicity, where organic matter cycles also occurred. The study of origin of organic matter accumulation in the Chihsian Formation helps understand the role of sea level fluctuation on the formation of organic-carbon-rich sediments. Using a cycle as the study interval, based on the study of pyrite morphology and geochemical parameters, such as TOC, δ34S, DOP and trace elements, we find out that the variation of ocean surface water primary productivity parameters, such as Ba, Ni, Cu and Zn, are consistent with TOC contents, suggesting organic matter accumulation was controlled by primary productivity. The redox condition in bottom water is related to primary productivity. The ultimate origin for the organic matter accumulation should be the high-frequency sea level fluctuation. Rapid sea level rising brought rich nutrients, flourishing surface water biologic productivity. The decomposition of organic matter from dead body demanded more oxygen concentration, resulting in dysoxic-anoxic environment in bottom water.
-
Key words:
- primary productivity /
- redox condition /
- Chihsian Formation /
- relative sea level change
-
图 5 桑植剖面详细岩性柱以及研究层段TOC、微量元素含量(Ba、Ni、Cu、Zn、Mo和U)、微量元素比值(Ni/Co、V/Sc)、DOP和δ34S同位素组成变化特征
Fig. 5. Detailed log of the Sangzhi section and variations in TOC, trace elements concentrations (Ba, Ni, Cu, Zn, Mo, U), trace element ratios (Ni/Co, V/Sc), DOP, and δ34S isotopic composition through the study interval
表 1 微量元素、DOP及TOC数据
Table 1. Trace element, DOP and TOC data
样品号 ED11 ED12 ED13 ED14 ED15 ED16 ED17 ED18 ED19 ED20 ED21 Li 1.69 2.01 3.89 17.36 21.54 1.84 3.13 14.12 10.51 4.49 2.53 Be 0.02 0.12 0.13 0.37 0.26 0.11 0.13 0.23 0.25 0.12 0.10 Sc 1.29 1.92 1.52 2.49 2.21 1.93 1.96 1.73 2.46 1.64 1.52 V 3.07 8.97 7.99 42.92 35.55 4.09 4.99 21.63 23.37 3.96 2.87 Cr 6.53 3.69 7.90 21.33 28.17 17.84 5.54 17.04 30.92 8.24 16.76 Co 0.85 0.82 0.77 1.58 0.99 0.89 0.81 0.88 0.88 0.69 0.75 Ni 4.44 2.87 2.88 13.01 10.36 2.87 3.82 5.72 6.32 3.80 2.76 Cu 0.52 0.35 0.50 5.01 4.18 1.28 0.71 2.02 3.59 0.66 0.12 Zn 7.52 8.27 7.97 31.48 23.08 8.57 8.74 14.11 21.08 9.73 8.42 Ga 0.07 0.17 0.23 1.80 1.02 0.15 0.21 0.78 0.54 0.24 0.07 Rb 0.18 0.69 0.71 6.60 3.70 0.94 0.92 2.35 2.59 0.56 0.32 Sr 1 309 1 256 907 369 223 977 974 451 654 968 1 128 Y 1.09 1.74 2.12 5.71 3.80 1.66 1.88 3.98 4.77 3.86 3.24 Zr 0.56 2.99 4.29 15.06 10.19 1.67 3.37 7.73 7.68 3.36 2.62 Nb 0.49 0.48 0.52 1.79 1.24 0.70 0.61 1.09 1.09 0.54 0.45 Mo 0.24 0.52 0.82 3.20 2.03 0.46 0.31 0.42 0.35 0.22 0.27 Cs 0.03 0.07 0.09 0.68 0.48 0.10 0.10 0.28 0.22 0.08 0.05 Ba 3.53 8.46 6.68 21.67 13.36 5.88 6.05 10.31 11.86 7.66 7.18 Hf 0.02 0.10 0.12 0.42 0.29 0.05 0.11 0.23 0.23 0.11 0.09 Ta 0.04 0.05 0.05 0.13 0.09 0.04 0.04 0.08 0.08 0.05 0.04 Tl 0.04 0.06 0.05 0.25 0.29 0.05 0.05 0.09 0.07 0.05 0.04 Pb 8.54 12.73 9.68 9.33 6.40 2.69 7.83 10.88 4.31 1.87 10.11 Bi 0.01 0.02 0.02 0.10 0.09 0.02 0.02 0.05 0.05 0.03 0.02 Th 0.06 0.18 0.21 1.18 0.74 0.15 0.22 0.62 0.62 0.24 0.19 U 2.30 3.13 2.11 8.10 4.83 1.58 1.85 3.06 3.38 1.47 2.26 Ni/Co 5.22 3.52 3.73 8.22 10.42 3.21 4.71 6.52 7.22 5.53 3.69 V/Sc 2.38 4.66 5.26 17.26 16.11 2.11 2.54 12.52 9.49 2.41 1.89 FeH - - - 0.168 0.056 0.019 0.072 0.304 0.230 0.020 0.053 Fep - - - 0.078 0.026 0.009 0.033 0.142 0.107 0.009 0.025 DOP - - - 0.621 0.393 0.510 0.803 0.862 0.816 0.431 0.749 TOC 0.11 0.08 0.25 0.71 0.66 0.09 0.1 0.41 0.52 0.18 0.18 注:微量元素单位为10-6;FeH是酸溶铁含量,单位为%,Fep是黄铁矿铁含量,单位为%;TOC单位为%. -
[1] Algeo, T.J., Maynard, J.B., 2004. Trace-Element Behavoir and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009 [2] Bao, H.Y., Ma, Z.W., Hu, C.Y., et al., 2009. Productivity of Limestone-Marl Rhythms of Permiain Chihsia Formation in Wuhan. Geological Science and Technology Information, 28(2): 60-65(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200902010.htm [3] Bergamaschi, B.A., Tsamakis, E., Keil, R.G., et al., 1997. The Effect of Grain Size and Surface Area on Organic Matter, Lignin and Carbonhydrate Concentration, and Molecular Compositions in Peru Margin Sediments. Geochimica et Cosmochimica Acta, 61(6): 1247-1260. doi: 10.1016/S0016-7037(96)00394-8 [4] Berner, R.A., 1970. Sedimentary Pyrite Formation. American Journal of Science, 268(1): 1-23. doi: 10.2475/ajs.268.1.1 [5] Bishop, J.K.B., 1988. The Barite-Opal-Organic Carbon Association in Oceanic Particulate Matter. Nature, 332(24): 341-343. doi: 10.1038/332341a0 [6] Calvert, S.E., 1987. Oceanographic Controls on the Accumulation of Organic Matter in Marine Sediments. In: Brooks, J., Fleet, A.J., eds., Marine Petroleum Source Rocks. Blackwell, Oxford, 137-151. [7] Calvert, S.E., Pedersen, T.F., 1992. Organic Carbon Accumulation and Preservation in Marine Sediments: How Important Is Anoxia? In: Whelan, J.K., Farrington, J.W., eds., Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments. Columbia University Press, New York, 231-263. [8] Calvert, S.E., Pedersen, T.F., Naidu, P.D., et al., 1995. On the Organic Carbon Maximum on the Continental Slope of the Eastern Arabian Sea. Journal of Marine Research, 53(2): 269-296. doi: 10.1357/0022240953213232 [9] Canfield, D.E., 1989. Reactive Iron in Marine Sediments. Geochimica et Cosmochimica Acta, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7 [10] Canfield, D.E., Raiswell, R., Westrich, J.T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54(1-2): 149-155. doi: 10.1016/0009-2541(86)90078-1 [11] Chambers, L.A., 1982. Sulfur Isotope Study of a Modern Intertidal Environment, and the Interpretation of Ancient Sulfides. Geochimica et Cosmochimica Acta, 46(5): 721-728. doi: 10.1016/0016-7037(82)90023-0 [12] Chen, H.D., Qin, J.X., Wang, C.S., et al., 1999. Sequence-Based Lithofacies and Paleogeographic Characteristics and Evolution of Permian in South China. Acta Sedimentologica Sinica, 17(4): 510-521(in Chinese with English abstract). http://www.researchgate.net/publication/298645258_Sequence-based_lithofacies_and_paleogeographic_characteristics_and_evolution_of_Permian_in_south_China [13] Chow, T.J., Goldberg, E.D., 1960. On the Marine Geochemistry of Barium. Geochimica et Cosmochimica Acta, 20(3-4): 192-198. doi: 10.1016/0016-7037(60)90073-9 [14] Claypool, G.E., Holser, W.T., Kaplan, I.R., et al., 1980. The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation. Chemical Geology, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9 [15] Dehairs, F., Stroobants, N., Goeyens, L., 1991. Suspended Barite as a Tracer of Biogical Activity in the Southern Ocean. Marine Chemistry, 35(1-4): 399-410. doi: 10.1016/S0304-4203(09)90032-9 [16] Dehairs, F., Chesselet, R., Jedwab, J., 1980. Discrete Suspended Particles of Barite and the Barium Cycle in the Open Ocean. Earth Planetary Science Letter, 49(2): 528-550. doi: 10.1016/0012-821X(80)90094-1 [17] Demaison, G.J., Moore, G.T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9-31. doi: 10.1016/0146-6380(80)90017-0 [18] Disnar, J.R., Trichet, J., 1983. Pyrolyse de Complexes Organo-métalliques formés Entre un Matériau Organique Actuel d'origine Algaire et Divers Cations Métalliques Divalents (UO22+, Cu2+, Ni2+, Mn2+, Zn2+, et Co2+). Chemical Geology, 40(3-4): 203-223. doi: 10.1016/0009-2541(83)90030-X [19] Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. doi: 10.1029/92PA00181 [20] Fernex, F., Février, G., Benaïm, J., et al., 1992. Copper, Lead and Zinc Trapping in Mediterranean Deep-Sea Sediments: Probable Coprecipitation with Manganese and Iron. Chemical Geology, 98(3-4): 293-308. doi: 10.1016/0009-2541(92)90190-G [21] Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin, 520. [22] Francois, R., Honjo, S., Manganini, S.J., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstructions. Global Biochemical Cycles, 9(2): 289-303. doi: 10.1029/95GB00021 [23] Ganeshram, R.S., Calvert, S.E., Pedersen, T.F., et al., 1999. Factors Controlling the Burial of Organic Carbon in Laminated and Bioturbated Sediments off NW Mexico: Implication for Hydrocarbon Preservation. Geochimica et Cosmochimica, 63(11/12): 1723-1734. doi: 10.1016/S0016-7037(99)00073-3 [24] Habicht, K.S., Canfield, D.E., 1997. Sulfur Isotope Fractionation during Bacterial Sulfate Reduction in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 61(24): 5351-5361. doi: 10.1016/S0016-7037(97)00311-6 [25] Hetényi, M., Brukner-Wein, A., Sajgó, C., et al., 2002. Variations in Organic Geochemistry and Lithology of a Carbonate Sequence Deposited in a Backplatform Basin (Triassic, Hungary). Organic Geochemistry, 33(12): 1571-1591. doi: 10.1016/S0146-6380(02)00188-2 [26] Holser, W.T., Kaplan, I.R., 1966. Isotope Geochemistry of Sedimentary Sulfates. Chemical Geology, 1: 93-135. doi: 10.1016/0009-2541(66)90011-8 [27] Hudson, J.D., 1982. Pyrite in Ammonite-Bearing Shales from the Jurassic of England and Germany. Sedimentology, 29(5): 639-667. doi: 10.1111/j.1365-3091.1982.tb00072.x [28] Jones, B., Manning, D.A.C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X [29] Jørgensen, B.B., 1977. Bacterial Sulfate Reduction within Reduced Microniches of Oxidized Marine Sediments. Marine Biology, 41: 7-17. doi: 10.1007/BF00390576 [30] Kimura, H., Watanabe, Y., 2001. Ocean Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995-998. doi: 10.1130/0091-7613(2001) [31] Lyons, T.W., Werne, J.P., Hollander, D.J., et al., 2003. Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 195(1-4): 131-157. doi: 10.1016/S0009-2541(02)00392-3 [32] Mou, C.L., Qiu, D.Z., Wang, L.Q., et al., 1997. Permian Sedimentary Facies and Palaeogeography in the Hunan-Hubei-Jiangxi Region. Journal of Palaeogeography, 17(6): 1-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YXGD706.000.htm [33] Naimo, D., Adamo, P., Imperato, M., et al., 2005. Mineralogy and Geochemistry of a Marine Sequence, Gulf of Salerno, Italy. Quat. Int. , 140-141: 53-63. doi: 10.1016/j.quaint.2005.05.004 [34] Nameroff, T. J, Calvert, S.E., Murray, J.W., 2004. Glacial-Interglacial Veriability in the Eastern Tropical North Pacific Oxygen Minimum Zone Recorded by Redox-Sensitive Trace Metals. Paleoceanography, 19(1): 1-19. doi: 10.1029/2003PA000912 [35] Paropkari, A.L., Prakash Babu, C., Mascarenhas, A., 1992. A Critical Evaluation of Depositional Parameters Controlling the Variability of Organic Carbon in the Arabian Sea Sediments. Marine Geology, 107(3): 213-226. doi: 10.1016/0025-3227(92)90168-H [36] Paropkari, A.L., Prakash Babu, C., Mascarenhas, A., 1993. New Evidence for Enhanced Preservation of Organic Carbon in Contact with the Oxygen Minimum Zone on the Western Continental Slope of India. Marine Geology, 111(1-2): 7-13. doi: 10.1016/0025-3227(93)90185-X [37] Paytan, A., Kastner, M., 1996. Benthic Ba Fluxes in the Central Equatorial Pacific, Implications for the Oceanic Ba Cycle. Earth Planetary Science Letters, 142(3-4): 439-450. doi: 10.1016/0012-821X(96)00120-3 [38] Pedersen, T.F., Calvert, S.E., 1990. Anxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks? American Association of Petroleum Geologists Bulletin, 74(4): 454-466. [39] Piper, D.Z., Calvert, S.E., 2009. A Marine Biogeochemical Perspective on Black Shale Deposition. Earth-Science Reviews, 95: 63-96. doi: 10.1016/j.earscirev.2009.03001 [40] Piper, D. Z, Perkins, R.B., 2004. A Modern vs. Permian Black Shale—the Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3-4): 177-197. doi: 10.1016/j.chemgeo.2003.12.006 [41] Raiswell, R., Newton, R., Wignall, P.B., 2001. An Indicator of Water-Column Anoxia: Resolution of Biofacies Variations in the Kimmeridge Clay (Upper Jurassic, U.K. ). Journal of Sedimentary Research, 71(2): 286-294. doi: 10.1306/070300710286 [42] Raiswell, R., Berner, R.A., 1985. Pyrite Formation in Euxinic and Semi-Euxinic Sediments. American Journal of Science, 285: 710-724. doi: 10.2475/ajs.285.8.710 [43] Raiswell, R., Buckley, F., Berner, R.A., et al., 1988. Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom-Water Oxygenation. Journal of Sedimentary Petrology, 58: 812-819. doi: 10.1306/212F8E72-2B24-11D7-8648000102C1865D [44] Rimmer, S.M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373-391. doi: 10.1016/j.chemgeo.2003.12.029 [45] Rimmer, S.M., Thompson, J.A., Goodnight, S.A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shale: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125-154. doi: 10.1016/j.palaeo.2004.09.001 [46] Schmitz, B., 1987. Barium, Equatorial High Productivity, and the Northward Wandering of the Indian Continent. Paleoceanography, 2(1): 63-77. doi: 10.1029/PA002i001p00063 [47] Schroeder, J.O., Murray, R.W., Leinen, M., et al., 1997. Barium in Equatorial Pacific Carbonate Sediments: Terrigenous, Oxide, and Biogenic Associations. Paleoceanography, 12(1): 125-146. doi: 10.1029/96PA02736 [48] Schwarcz, H.P., Burnie, S.W., 1973. Influence of Sedimentary Environments on Sulfur Isotope Ratios in Clastic Rocks: A Review. Mineralium Deposita, 8: 264-277. doi: 10.1007/BF00203208 [49] Strauss, H., 1997, The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 97-118. doi: 10.1016/S0031-0182(97)00067-9 [50] Stroobants, N., Dehairs, F., Goeyens, L., et al., 1991. Barite Formation in the Southern Ocean Water Column. Marine Chemistry, 35(1-4): 411-421. doi: 10.1016/S0304-4203(09)90033-0 [51] Sun, Y.Z., Püttmann, W., 2000. The Role of Organic Matter during Copper Enrichment in Kuferschiefer from the Sangerhausen Basin, Germany. Organic Geochemistry, 31(11): 1143-1161. doi: 10.1016/S0146-6380(00)00117-0 [52] Thiede, J., Van Andel, T.H., 1977. The Paleoenvironment of Anaerobic Sediments in the Late Mesozoic South Atlantic Ocean. Earth and Planetary Science Letters, 33(3): 301-309. doi: 10.1016/0012-821X(77)90082-6 [53] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012 [54] Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175-192. doi: 10.1130/0016-7606(1961)72 [55] Van der Weijden, C.H., Reichart, G.J., Visser, H.J., 1999. Enhanced Preservation of Organic Matter in Sediments Deposited within the Oxygen Minimum Zone in the Northestern Arabian Sea. Deep-Sea ResearchⅠ: Oceanographic, 46(5): 807-830. doi: 10.1016/S0967-0637(98)00093-4 [56] Wei, H.Y., Chen, D.Z., 2011. Lithofacies Palaeogeography of the Chihsian Age of Permian in Western Hubei-Northwestern Hunan Provinces. Journal of Palaeogeography, 13(5): 551-562(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201105015.htm [57] Wei, H.Y., Chen, D.Z., Wang, J.G., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353-355: 73-86. doi: 10.1016/j.palaeo.2012.07.005 [58] Wignall, P.B., 1994. Black Shales. Oxford University Press, Oxford, 127. [59] Wignall, P.B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298: 537-552. doi: 10.2475/ajs.298.7.537 [60] Wilde, P., Lyons, T.W., Quinby-Hunt, M.S., 2004. Organic Carbon Proxies in Black Shales: Molybdenum. Chemical Geology, 206(3-4): 167-176. doi: 10.1016/j.chemgeo.2003.12.005 [61] Wilkin, R.T., Arthur, M.A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2-H2S Redox Transition. Geochimica et cosmochimica Acta, 65(9): 1399-1416. doi: 10.1016/S0016-7037(01)00552-X [62] Yan, J.X., 2004. Origin of Permian Chihsian Carbonates from South China and Its Geological Implications. Acta Sedimentologica Sinica, 22(4): 579-587(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200404004.htm [63] Yan, J.X., Fang, N.Q., 1994. Depositional Environments, Cycles and Sequences of Chihsia Formation in Hubei Province. Earth Science—Journal of China University of Geosciences, 19(5): 620-627(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199405008.htm [64] Yan, J.X., Liu, X.Y., 2007. Geobiological Interpretation of the Oxygen-Deficient Deposits of the Middle Permian Marine Source Rocks in South China: A Working Hypothesis. Earth Science—Journal of China University of Geosciences, 32(6): 789-796 (in Chinese with English abstract). http://www.iacademic.info/user-api/na/articleBybaidu?j=61530&a=594556533193150526 [65] 包汉勇, 马仲武, 胡超涌, 等, 2009. 武汉地区二叠系栖霞组灰岩-含泥灰岩韵律层生物产率. 地质科技情报, 28(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902010.htm [66] 陈洪德, 秦建雄, 王成善, 等, 1999. 中国南方二叠纪层序岩相古地理特征和演化. 沉积学报, 17(4): 510-521. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904001.htm [67] 牟传龙, 丘东洲, 王立全, 等, 1997. 湘鄂赣二叠纪岩相古地理研究. 岩相古地理, 17(6): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199706002.htm [68] 韦恒叶, 陈代钊, 2011. 鄂西-湘西北地区二叠纪栖霞期岩相古地理. 古地理学报, 13(5): 551-562. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105015.htm [69] 颜佳新, 2004. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义. 沉积学报, 22(4): 579-587. doi: 10.3969/j.issn.1000-0550.2004.04.005 [70] 颜佳新, 方念乔, 1994. 湖北省栖霞组沉积环境、沉积旋回及层序地层划分. 地球科学——中国地质大学学报, 19(5): 620-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199405008.htm [71] 颜佳新, 刘新宇, 2007. 从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式. 地球科学——中国地质大学学报, 32(6): 789-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706010.htm