Early Triassic Diorite-Porphyrite Dikes from the Shilu Area, Hainan Island: Zircon U-Pb Age and Tectonic Implication
-
摘要: 石碌铁矿床位于海南岛五指山褶皱带西段.矿区内外发育以闪长玢岩脉为主的中基性脉岩.LA-ICP-MS锆石U-Pb定年厘定闪长玢岩脉年龄为248±1 Ma(MSWD=0.4),为早三叠世岩浆活动的产物,与同时代的富碱侵入岩体构成“双峰式”侵入岩.闪长玢岩脉为钾玄质系列,低SiO2(49.18%~55.25%)、高Al2O3(14.36%~16.75%)、FeOt(5.98%~10.07%)和MgO(3.80%~5.43%),富集LILE和LREE,亏损HFSE.Nb/Ta、Zr/Hf和La/Nb比值分别为15.33~17.80、36.00~45.23和2.59~8.62;Pb同位素组成(206Pb/204Pb)t=18.087~18.483,(207Pb/204Pb)t=15.473~15.587,(208Pb/204Pb)t=38.272~38.817.LREE/HFSE和LILE/HFSE比值及Pb同位素组成显示为富集地幔来源,但混染有少量的地壳物质.HFSE判别图解指示闪长玢岩脉形成于大陆边缘弧伸展背景,与晚二叠世印支板块NE向向华南地块俯冲造成的大陆边缘弧局部伸展有关.Abstract: The Shilu iron deposit is located in western section of the Wuzhishan Fold Belt, Hainan island.In this region, numerous intermediate-basic dikes dominated by diorite-porphyrite occurred. The dating of zircon from diorite-porphyrite dikes determined by LA-ICP-MS yields age of 248±1 Ma (MSWD=0.4), maybe bimodal intrusion with contemporary alkali-rich granites. Diorite-porphyrite dikes are dominated by shoshonitic rocks, which have SiO2 varying from 49.18% to 55.25%, Al2O3 from 14.36% to 16.75%, FeOt from 5.98% to 10.07% and MgO ranging from 3.80% to 5.43%. These dikes are enriched in large ion lithophile elements (LILE) and low rare earth elements (LREE) but depleted in high field strength element (HFSE).The Nb/Ta values of diorite-porphyrite vary from 15.33 to 17.80, Zr/Hf and La/Nb from 36.00 to 45.23 and 2.59 to 8.62, respectively.Two samples have (206Pb/204Pb)t=18.087-18.483, (207Pb/204Pb)t=15.473-15.589 and (208Pb/204Pb)t=38.272-38.817, similar to the data of contemporary alkali-rich granites. Geochemical and Pb isotopic compositions indicate that these dikes are possibly derived from enriched mantle and slightly contaminated with crust.Hf/3-Th-Ta and Zr-Zr/Y discriminant diagrams imply these diorite-porphyrite dikes intruded in a local nextensional tectonic setting in continental arc, caused by the Indian plate northeastern subduction to the South China Block.
-
Key words:
- diorite-porphyrite dike /
- Early Triassic /
- continental margin arc /
- Shilu iron deposit /
- geochronology /
- Hainan island
-
图 1 海南岛地质略图(a,据许德如等, 2009修改)、石碌铁矿床地质简图(b,据许德如等, 2008修改)和钻孔Ck714柱状图(c,据海南省地勘局, 2009.海南省石碌铁矿床E19勘探线剖面图修改)
1.中新生代盖层;2.新生代玄武岩;3.白垩系砾岩层;4.早古生代火山碎屑岩;5.晚古生代火山-沉积岩;6.新元古代石碌群;7.古中元古代抱板群和片麻状花岗岩;8.新太古代杂岩;9.新元古界石碌群;10.新元古界石灰顶组;11.上、下石炭统;12.上、下二叠统;13.变基性岩;14.130~90 Ma花岗岩;15.270~180 Ma花岗岩;16.二叠纪花岗闪长岩;17.侏罗纪花岗闪长岩;18.闪长玢岩脉;19.花岗斑岩脉;20.辉绿玢岩脉;21.铁矿体;22.铜矿体;23.钴矿体;24.向斜;25.背斜;26.实测及推测断裂;27.地质界线;28.钻孔;29.取样点;W-E向断裂:①戈枕断裂,②白沙断裂;NE-SW向断裂:A=王五-文教断裂,B=昌江-琼海断裂,C=尖峰-吊罗断裂,D=就锁-陵水断裂
Fig. 1. Tectonic map of Hainan island (a), geological map of the Shilu iron deposit (b) and drill bore column of Ck714 (c)
图 4 闪长玢岩脉(ZrSL-2)锆石球粒陨石标准化稀土配分图解
球粒陨石值据Sun and McDonough(1989)
Fig. 4. Chondrite normalized REE patterns of diorite-porphyrite sample (ZrSL-2)
图 5 闪长玢岩脉原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土配分曲线(b)
琼中中-早三叠世正长岩体数据周佐民等(2011).原始地幔和球粒陨石标准据Sun and McDonough (1989)
Fig. 5. Primitive mantle normalized trace element distributions (a) and chondrite normalized REE patterns (b) of diorite-porphyrite dikes from Shilu area
图 6 闪长玢岩脉Nb/Y-Zr/TiO2(a) (据Winchester and Floyd, 1976)和Ta/Yb-Th/Yb(b) (据Pearce, 1983)判别图解
WPB.板内玄武岩;MORB.洋中脊玄武岩;琼中中-早三叠世正长岩体数据周佐民等(2011)
Fig. 6. Nb/Y-Zr/TiO2 (a) and Ta/Yb-Th/Yb (b) diagrams of diorite-porphyrite dikes
图 7 闪长玢岩脉Hf/3-Th-Ta(a) (据Wood et al., 1979) 及Zr-Zr/Y(b) (据Pearce and Norry, 1979)构造判别图解
数据来源同图 6.N-MORB.洋中脊玄武岩;E-MORB+WPB.洋中脊玄武岩和板内拉斑玄武岩;WPB.板内碱性玄武岩;CAB.岛弧钙碱性玄武岩;IAT.岛弧拉斑玄武岩
Fig. 7. Hf/3-Th-Ta (a) and Zr-Zr/Y (b) diagrams to describe tectonic location of diorite-porphyrite dikes
表 1 石碌地区闪长玢岩脉(ZrSL-2)锆石U-Pb定年分析结果
Table 1. LA-ICP-MS zircon U-Pb dating data of diorite-porphyrite sample (ZrSL-2) from Shilu area
测试点号 Th
(10-6)U
(10-6)Th/U U-Th-Pb同位素比值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ ZrSL-2-1 537 1 220 0.44 0.047 9 0.002 9 0.261 4 0.014 7 0.039 2 0.000 4 0.012 5 0.000 3 100 131 236 12 248 3 252 6 ZrSL-2-2 183 404 0.45 0.049 8 0.003 0 0.270 7 0.015 7 0.039 4 0.000 5 0.012 2 0.000 4 187 144 243 13 249 3 246 8 ZrSL-2-3 917 1 712 0.54 0.047 2 0.002 2 0.257 5 0.011 5 0.039 2 0.000 5 0.011 4 0.000 3 57.5 107.4 233 9 248 3 229 6 ZrSL-2-4 2 377 4 155 0.57 0.051 6 0.001 9 0.280 5 0.010 8 0.038 8 0.000 4 0.012 3 0.000 4 333 83 251 9 245 3 247 8 ZrSL-2-5 873 932 0.94 0.049 8 0.001 8 0.268 7 0.009 8 0.038 8 0.000 4 0.011 5 0.000 3 187 116 242 8 245 3 230 6 ZrSL-2-6 756 1 807 0.42 0.050 5 0.001 5 0.288 8 0.008 7 0.041 1 0.000 4 0.012 4 0.000 3 220 69 258 7 260 2 249 7 ZrSL-2-7 194 505 0.38 0.049 4 0.002 2 0.269 7 0.011 5 0.039 7 0.000 6 0.011 8 0.000 5 165 138 242 9 251 4 237 10 ZrSL-2-8 430 555 0.77 0.050 1 0.002 0 0.267 5 0.010 2 0.038 9 0.000 4 0.011 9 0.000 3 211 97 241 8 246 3 239 6 ZrSL-2-9 159 374 0.43 0.050 7 0.002 9 0.274 0 0.014 8 0.039 3 0.000 6 0.012 3 0.000 5 228 127 246 12 249 4 247 10 ZrSL-2-10 540 530 1.02 0.049 9 0.002 1 0.270 9 0.010 9 0.039 4 0.000 5 0.012 8 0.000 3 191 92 243 9 249 3 256 7 ZrSL-2-11 355 1 221 0.29 0.048 1 0.001 7 0.263 8 0.009 6 0.039 5 0.000 4 0.012 2 0.000 4 106 85 238 8 250 3 244 7 ZrSL-2-12 795 1 886 0.42 0.053 1 0.002 1 0.312 6 0.012 8 0.042 3 0.000 5 0.014 3 0.000 4 345 89 276 10 267 3 287 9 ZrSL-2-13 1 328 4 582 0.29 0.050 8 0.001 1 0.278 2 0.006 2 0.039 5 0.000 5 0.011 9 0.000 3 232 45 249 5 250 3 240 6 ZrSL-2-14 552 552 1.00 0.049 0 0.002 6 0.264 3 0.014 0 0.039 0 0.000 4 0.012 3 0.000 4 146 124 238 11 247 3 246 7 ZrSL-2-15 108 380 0.28 0.051 6 0.002 1 0.279 9 0.011 5 0.039 3 0.000 5 0.013 0 0.000 5 265 97 251 9 248 3 261 11 ZrSL-2-16 382 560 0.68 0.054 2 0.002 9 0.291 1 0.014 6 0.039 1 0.000 5 0.012 8 0.000 4 389 120 259 11 247 3 256 8 ZrSL-2-17 56.9 169 0.34 0.054 5 0.005 6 0.297 2 0.031 9 0.038 8 0.000 7 0.011 4 0.000 8 394 233 264 25 245 5 229 16 ZrSL-2-18 596 672 0.89 0.053 8 0.002 0 0.291 2 0.010 3 0.039 4 0.000 5 0.012 2 0.000 3 365 81 259 8 249 3 245 6 ZrSL-2-19 368 1 266 0.29 0.054 0 0.001 6 0.295 8 0.008 5 0.039 6 0.000 4 0.012 7 0.000 3 372 65 263 7 250 2 256 6 ZrSL-2-20 607 738 0.82 0.054 8 0.002 4 0.297 8 0.012 8 0.039 3 0.000 5 0.013 3 0.000 4 467 96 265 10 248 3 267 7 表 2 闪长玢岩脉(ZrSL-2)锆石微量元素分析结果(10-6)
Table 2. Trace elements data of diorite-porphyrite sample (ZrSL-2) from Shilu area
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ti Eu/Eu* Ce/Ce* TZr(℃)±† ZrSL-2-1 28.98 98.06 12.54 66.02 21.09 0.78 47.67 14.27 166.58 62.75 288.64 61.05 564.52 109.19 1.52 0.07 1.26 - - ZrSL-2-2 0.01 6.97 0.09 2.11 3.93 0.34 20.07 6.87 82.56 31.91 142.76 29.15 269.71 52.76 2.42 0.09 23.58 1216 22 ZrSL-2-3 0.38 49.00 0.65 5.15 9.38 0.67 42.85 15.55 177.64 68.41 295.01 61.52 547.14 104.95 5.02 0.09 19.05 835 14 ZrSL-2-4 1.32 93.80 2.88 21.36 30.43 1.67 117.07 36.53 398.69 140.49 590.64 116.67 1 010.10 187.97 57.42 0.08 8.55 660 11 ZrSL-2-5 0.19 28.98 0.28 4.89 11.03 0.73 50.47 14.17 143.57 48.87 200.44 39.11 339.81 62.71 11.86 0.08 25.20 727 12 ZrSL-2-6 4.30 25.33 2.28 13.62 16.97 0.18 94.21 32.01 388.46 146.36 623.24 119.94 1 027.31 187.25 4.27 0.01 1.96 875 15 ZrSL-2-7 0.05 10.51 0.07 2.03 4.05 0.17 22.74 7.66 94.60 36.76 164.14 32.83 301.82 58.01 3.55 0.04 34.62 938 16 ZrSL-2-8 1.17 23.49 0.94 6.52 6.93 0.33 27.95 9.25 113.06 41.93 190.10 38.71 346.60 64.88 5.95 0.06 5.18 803 13 ZrSL-2-9 0.00 6.67 0.11 1.74 4.04 0.47 21.13 6.89 85.17 32.11 150.02 30.93 299.90 57.81 3.98 0.12 897 15 ZrSL-2-10 0.38 22.02 0.34 4.10 6.27 0.46 34.90 11.16 127.42 46.08 200.03 39.47 344.76 64.74 7.56 0.08 13.94 770 13 ZrSL-2-11 2.17 13.27 0.90 4.14 3.70 0.14 16.27 6.95 88.14 37.13 179.49 41.34 406.70 81.03 1.14 0.05 2.33 - - ZrSL-2-12 0.05 22.99 0.32 2.86 9.64 0.16 60.14 23.57 286.76 107.26 454.55 89.32 790.61 140.82 5.59 0.02 21.08 814 13 ZrSL-2-13 0.20 12.23 0.49 3.07 6.72 0.26 48.06 19.69 260.35 105.65 479.84 99.65 898.06 171.74 4.79 0.03 6.64 846 14 ZrSL-2-14 3.54 22.43 1.43 10.82 13.18 0.63 59.69 18.87 211.74 79.13 332.72 65.37 568.85 103.75 7.90 0.06 2.44 764 12 ZrSL-2-15 - 6.09 0.04 0.99 2.33 0.24 19.77 6.54 80.38 32.48 154.61 34.07 332.21 67.67 4.21 0.07 879 15 ZrSL-2-16 - 18.15 0.12 1.05 3.78 0.16 25.04 8.77 104.33 40.72 183.23 37.64 335.05 62.20 4.74 0.04 848 14 ZrSL-2-17 - 3.97 0.11 1.01 2.40 0.51 13.18 4.28 52.51 21.25 101.39 22.10 229.58 45.53 7.98 0.22 763 12 ZrSL-2-18 0.04 24.20 0.27 3.56 9.27 0.65 36.60 10.65 108.44 36.82 149.64 29.54 258.28 48.13 10.40 0.09 26.39 737 12 ZrSL-2-19 0.72 10.96 0.49 3.57 4.11 0.28 20.48 7.58 98.38 39.36 192.55 44.32 436.77 84.44 1.57 0.08 4.39 - - ZrSL-2-20 1.10 31.94 0.96 9.51 10.32 0.66 41.05 10.92 110.03 37.58 155.78 31.08 281.34 50.64 73.97 0.09 7.07 655 11 †: TZr(℃)为据 Watson et al.(2006) Ti温度计log(Tizircon)=(6.01±0.03)-(5 080±30)/T(K)计算的锆石饱和温度.表 3 闪长玢岩脉主量元素(%)、微量及稀土元素(10-6)分析结果
Table 3. Major (%) and trace elements (10-6) compositions of diorite-porphyrite dikes from Shilu area
样号 SLN-8 SL-26 SL-27 ZM-5 SiO2 52.00 46.00 49.18 55.25 Al2O3 15.88 12.13 16.75 14.36 FeOt 10.07 8.24 8.52 5.98 CaO 6.68 7.04 9.68 6.17 MgO 4.03 12.50 5.43 3.80 Na2O 2.79 1.27 3.53 3.67 K2O 2.94 0.49 2.17 2.10 TiO2 1.86 0.66 1.54 1.23 MnO 0.15 0.12 0.23 0.10 P2O5 0.73 0.16 1.11 0.59 LOI 2.69 10.90 1.24 6.28 Total 100.15 99.98 99.62 99.80 Mg# 47.1 77.1 58.6 58.5 Na2O+K2O 5.73 1.76 5.70 5.77 K2O/Na2O 1.1 0.4 0.6 0.6 Cr 50 1 470 40 90 Co 26.3 47.8 23.8 24.4 Ga 20.3 13.9 20.5 17.8 Rb 135.0 24.8 112.5 74.3 Sr 571 249 1 120 429 Y 35 15.1 29.1 19.4 Zr 234 72 294 209 Nb 13.9 4.6 8.9 18.7 Ba 1 995 1 985 773 1 690 Hf 5.9 2.0 6.50 5.0 Ta 0.8 0.3 0.50 1.1 Pb 14 14 11 422 Th 18.40 3.54 14.65 10.15 U 2.45 1.09 2.69 1.52 La 65.70 12.90 76.70 48.40 Ce 140.00 28.10 149.50 99.20 Pr 18.05 3.66 18.15 12.00 Nd 66.60 14.20 63.50 43.50 Sm 11.80 3.08 11.40 7.56 Eu 3.06 0.89 2.77 1.75 Gd 10.55 3.21 9.94 6.38 Tb 1.35 0.50 1.20 0.80 Dy 6.88 2.99 5.90 3.71 Ho 1.38 0.63 1.12 0.73 Er 3.75 1.82 3.11 1.92 Tm 0.52 0.23 0.40 0.24 Yb 3.08 1.69 2.47 1.52 Lu 0.47 0.24 0.37 0.24 ∑REE 333.19 74.14 346.53 227.95 (La/Yb)N 15.3 5.5 22.3 22.8 Eu/Eu* 0.82 0.86 0.78 0.75 Nb/Ta 17.38 15.33 17.80 17.00 Zr/Hf 39.66 36.00 45.23 41.80 Hf/Sm 0.50 0.65 0.57 0.66 La/Ta 82.13 43.00 153.40 44.00 Ba/Nb 143.53 431.52 86.85 90.37 Rb/Zr 0.58 0.34 0.38 0.36 La/Nb 4.73 2.80 8.62 2.59 Mg#=100×Mg2+/(Mg2++0.9×FeOt/80). 表 4 闪长玢岩脉Pb同位素分析结果
Table 4. Pb isotopic compositions of diorite-porphyrite dikes from Shilu area
编号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t SLN-8 18.679±0.006 15.596±0.003 39.290±0.008 18.483 15.587 38.817 SL-27 18.091±0.003 15.473±0.003 38.281±0.007 18.087 15.473 38.272 海南中-早三叠世正长岩 18.487~18.714 15.580~15.657 38.503~38.682 注:校正年龄为t=248 Ma;海南中-早三叠世正长岩Pb同位素测试对象为长石,由7件样品组成,谢才富等(2005, 2006)和周佐民等(2011). -
[1] Cai, J.X., Zhang, K.J., 2009. A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic. Tectonophysics, 467: 35-43. doi: 10.1016/j.tecto.2008.12.003 [2] Carter, A., Roques, D., Bristow, C.S., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29: 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2. [3] Chen, D.L., Sun, Y., Liu, L., et al., 2007. In Situ LA-ICP-MS Zircon U-Pb Age of Ultrahigh-Pressure Eclogites in the Yukahe Area, Northern Qaidam Basin. Science in China (Series D), 50(Suppl. ): 322-330. doi: 10.1007/s11430-007-6001-6 [4] Fan, W.M., Wang, Y.J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169 (in Chinese with English abstract). http://www.researchgate.net/publication/284053740_Mesozoic_mafic_magmatism_in_Hunan-Jiangxi_provinces_and_the_lithospheric_extension [5] Fitton, J.G., James, D., Kempton, P.D., et al. 1988. The Role of Lithosphere Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. In: Cox, K.G., Menzies, M.A., eds., Oceanic and Continental Lithosphere: Similarities and Differences. Journal of Petrology, Special Volume(1): 331-349. doi: 10.1093/petrology/Special_Volume.1.331 [6] Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian Appinite Magmas: Implications for Lamprophyre Fraction and High Ba-Sr Granite Genesis. Contributions to Mineralogy and Petrology, 126: 99-215. doi: 10.1007/s004100050244 [7] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4), 347-359. doi: 10.1016/0009-2541(94)00145-X [8] Griffin, W.L., Belousova, E.A., Shee, S., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011 [9] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: the Relationship between Large Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X [10] Hoskin, P.W.O., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 8: 423-439. doi: 10.1046/j.1525-1314.2000.00266.X [11] Hou, W., Chen, H.F., Peng, G.L., 1996. Geotectonics and Gold Metallogeny in Hainan Island. Science Press, Beijing (in Chinese). [12] Hsu, K.J., Li, J.L., Chen, H.H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183: 9-39. doi: 10.1016/0040-1951(90)90186-C [13] Lepvrier, C., Maluski, H., Nguyen, V.V., et al., 1997. Indosinian NW-Trending Shear Zones within the Truong Son Belt (Vietnam) 40Ar/39Ar Triassic Ages and Cretaceous to Cenozoic Overprints. Tectonophysics, 283: 105-127. doi: 10.1016/S0040-1951(97)00151-0 [14] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm [15] Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000. Metamorphosed Mafic Rocks with N-Type MORB Geochemical Features in Hainan Island-Remnants of the Paleo-Tethys Oceanic Crust? Chinese Science Bulletin, 45: 956-960. doi: 10.1007/BF02886208. [16] Li, X.H., Zhou, H.W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasaltic from Central Hainan Island, South China and Their Tectonic Significance. The Island Arc, 11: 193-205. doi: 10.1046/j.1440-1738.2002.00365.x [17] Li, X.H., Chung, S.L., Zhou, H.W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China. Geological Society, London, Special Publications, 226: 193-215. doi: 10.1144/GSL.SP.2004.226.01.11 [18] Li, X.H., Li, Z.X., Li, W.X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114: 341-353. doi: 0022-1376/2006/11403-0005 [19] Li, X.H., Li, Z.X., Li, W.X., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96: 186-204. doi: 10.1016/j.lithos.2006.09.018 [20] Li, Z.X., Li, X.H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1 [21] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082 [22] Mayborn, K.R., Lesher, C.E., Connelly, J.N., 2008. Geochemical Constraints on the Late-Stage Evolution of Basaltic Magma as Revealed by Composite Dikes within the Kangamiut Dike Swarm, West Greenland. Lithos, 104: 428-438. doi: 10.1016/j.lithos.2008.02.001 [23] Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69: 33-47. doi: 10.1007/BF00375192 [24] Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publishing, Nantwich, 158-185. [25] Poland, M.P., Fink, J.H., Tauxe, L., 2004. Patterns of Magma Flow in Segmented Silicic Dikes at Summer Coon Volcano, Coloarado: AMS and Thin Section Analysis. Earth and Planetary Science Letters, 219: 155-169. doi: 10.1016/S0012-821X(03)00706-4 [26] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crustmantle Recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891 [27] Scarrow, J.H., Leat, P.T., Wareham, C.D., et al., 1998. Geochemistry of Mafic Dykes in the Antarctic Peninsula Continental-Margin Batholith: A Record of Arc Evolution. Contributions to Mineralogy and Petrology, 131: 289-305. doi: 10.1007/s004100050394 [28] Scientific Researching Team of Iron-Rich Deposits in South China, Chinese Academy of Sciences, 1986. Geology of Hainan Island and Geochemistry of Iron Ore Deposits in Shilu. Science Press, Beijing (in Chinese). [29] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond. , 42: 313-345. [30] Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603002.htm [31] Wang, Q., Li, J.W., Jian, P., et al., 2005. Alkaline Syenites in Earstern Cathaysia (South China) : Link to Permian-Triassic Transtension. Earth and Planetare Science Letters, 230: 339-354. doi: 10.1016/j.epsl.2004.11.023 [32] Wang, Y.J., Fan, W.M., Guo, F., et al. 2003. Geochemistry of Mesozoic Mafic Rocks around the Chenzhou-Linwu Fault in South China: Implication for the Lithospheric Boundary between the Yangtze and the Cathaysia Blocks. International Geology Review, 45(3) : 263-286. doi: 10.2747/0020-6814.45.3.263 [33] Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. doi: 10.1016/j.lithos.2008.07.019 [34] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. doi: 10.1007/s00410-006-0068-5 [35] Winchester, J.A., Floyd, P.A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28: 459-469. doi: 10.1016/0012-821X(76)90207-7 [36] Wood, D.A., Joron, J.L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45: 326-336. doi: 10.1016/0012-821X(79)90133-X [37] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. Doi: 10.1360/04wd0130 [38] Xie, C.F., Zhu, J.C., Zhao, Z.J., et al., 2005. Zircon SHRIMP U-Pb Age Dating of Garnet-Acmite Syenite: Constraints on the Hercynian-Indosinian Tectonic Evolution of Hainan Island. Geological Journal of China Universities, 11(1): 47-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200501002.htm [39] Xie, C.F., Zhu, J.C., Ding, S.J., et al., 2006. Age and Petrogenesis of the Jianfengling Granite and Its Relationship to Metallogenesis of the Baolun Gold Deposit, Hainan Island. Acta Petrologica Sinica, 22(12): 2493-2508(in Chinese with English abstract). http://www.researchgate.net/publication/285729792_Age_and_petrogenesis_of_the_Jianfengling_granite_and_its_relationship_to_metallogenesis_of_the_Baolun_gold_deposit_Hainan_Island [40] Xie, G.Q., Hu, R.Z., Jia, D.C., 2002. Geological and Geochemical Characteristics and Its Significance of Mafic Dikes from Northwest Jiangxi Province. Geochimica, 31(4): 329-338 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX200204003.htm [41] Xie, G.Q., 2003. Late Mesozoic and Cenozoic Mafic Dikes (Bodies) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics-A Case of Jiangxi Province. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract). [42] Xu, D.R., Xia, B., Li, P.C., et al., 2006. SHRIMP U-Pb Dating of Zircon from the Precambrian Granitoids in Northwest Hainan Island and Its Geological Implications. Geotectonica et Metallogenia, 30(4): 510-518(in Chinese with English abstract). http://www.researchgate.net/publication/291445345_SHRIMP_U-Pb_dating_on_zircon_from_the_Precambrian_granitoid_rock_in_northwest_Hainan_Island_and_its_geological_implications [43] Xu, D.R., Wang, L., Xiao, Y., et al., 2008. A Preliminary Discussion on Metallogenic Model for Shilu-Type Iron Oxide-Copper-Gold-Cobalt Ore Deposit. Mineral Deposits, 27(6): 681-694(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200806003.htm [44] Xu, D.R., Xiao, Y., Xiao, B., et al., 2009. Metallogenic Model and Ore Predicting of the Shilu Iron Ore Deposit in Hainan Province. Geological Publishing House, Beijing (in Chinese). [45] Zhang, F.F., Wang, Y.J., Chen, X.Y., et al., 2011. Triassic High-Strain Shear Zones in Hainan Island (South China) and Their Implications on the Amalgamation of the Indochina and South China Blocks: Kinematic and 40Ar/39Ar Geochronological Constraints. Gondwana Research, 19: 910-925. doi: 10.1016/j.gr.2010.11.002 [46] Zhang, X.W., Xiang, H., Zhong, Z.Q., et al., 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science —Journal of China University of Geosciences, 34(6): 921-930(in Chinese with English abstract). doi: 10.3799/dqkx.2009.105 [47] Zhou, Z.M., Xie, C.F., Xu, Q., et al., 2011. Geological and Geochemical Characteristics of Middle Triassic Syenite-Granite Suite in Hainan Island and Its Geotectonic Implications. Geological Review, 57(4): 515-531(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201104007.htm [48] 范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. doi: 10.3321/j.issn:1005-2321.2003.03.015 [49] 侯威, 陈惠芳, 彭格林, 1996. 海南岛大地构造与金成矿学. 北京: 科学出版社. [50] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-28. doi: 10.3321/j.issn:0379-1726.1997.02.004 [51] 孙涛, 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 [52] 许德如, 夏斌, 李鹏春, 等, 2006. 海南岛北西部前寒武纪花岗质岩SHRIMP锆石U-Pb年龄及地质意义. 大地构造与成矿学, 30(4): 510-518. doi: 10.3969/j.issn.1001-1552.2006.04.014 [53] 许德如, 王力, 肖勇, 等, 2008. "石碌式"铁氧化物-铜(金)-钴矿床成矿模式初探. 矿床地质, 27(6): 681-694. doi: 10.3969/j.issn.0258-7106.2008.06.002 [54] 许德如, 肖勇, 夏斌, 等, 2009. 海南石碌铁矿床成矿模式与找矿预测. 北京: 地质出版社. [55] 谢桂青, 胡瑞忠, 贾大成, 2002. 赣西北基性岩脉的地质地球化学特征及其意义. 地球化学, 31(4): 329-338. doi: 10.3321/j.issn:0379-1726.2002.04.004 [56] 谢桂青, 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例. 贵阳: 中国科学院地球化学研究所. [57] 谢才富, 朱金初, 赵子杰, 等, 2005. 三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄: 对海南岛海西-印支期构造演化的制约. 高校地质学报, 11(1): 47-57. doi: 10.3969/j.issn.1006-7493.2005.01.003 [58] 谢才富, 朱金初, 丁式江, 等, 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22(12): 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm [59] 中国科学院华南富铁科学研究队, 1986. 海南岛地质与石碌铁矿地球化学. 北京: 科学出版社. [60] 周佐民, 谢才富, 徐倩, 等, 2011. 海南岛中三叠世正长岩-花岗岩套的地质地球化学特征与构造意义. 地质论评, 57(4): 515-531. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104007.htm [61] 张小文, 向华, 钟增球, 等, 2009. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定. 地球科学——中国地质大学学报, 34(6): 921-930. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906007.htm