• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正

    平宏伟 陈红汉 RégisThiéry

    平宏伟, 陈红汉, RégisThiéry, 2013. 石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正. 地球科学, 38(1): 143-155. doi: 10.3799/dqkx.2013.014
    引用本文: 平宏伟, 陈红汉, RégisThiéry, 2013. 石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正. 地球科学, 38(1): 143-155. doi: 10.3799/dqkx.2013.014
    PING Hong-wei, CHEN Hong-han, Régis Thiéry, 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration. Earth Science, 38(1): 143-155. doi: 10.3799/dqkx.2013.014
    Citation: PING Hong-wei, CHEN Hong-han, Régis Thiéry, 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration. Earth Science, 38(1): 143-155. doi: 10.3799/dqkx.2013.014

    石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正

    doi: 10.3799/dqkx.2013.014
    基金项目: 

    国家重点基础研究发展计划"973"项目 2012CB214804

    国家自然科学基金资助项目 41202088

    详细信息
      作者简介:

      平宏伟(1982—), 男, 讲师, 博士, 主要从事含烃流体地质研究

    • 中图分类号: P618

    Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration

    • 摘要: 除实验室测定参数(Th, oilTh, aquFv)外, 石油包裹体热动力学模拟古压力精度还极大地受控于石油组分模型、饱和压力预测以及气、液相摩尔体积的预测精度.在改进α-β组分模型前提下, 利用微调组分和匹配饱和压力方法改进并验证了石油流体饱和压力预测精度; 在匹配饱和压力与实验实测饱和压力前提下, 利用体积转换方法匹配22组油藏流体391个常组分膨胀实验相对体积数据, 从而改善了利用Peng-Robison状态方程计算油包裹体气泡充填度(20 ℃)和等容线的能力.最终评价了真实石油流体组分甲烷摩尔含量和等效石油流体组分甲烷摩尔含量两个组分模拟约束条件下, 改进的热动力学模拟方法和PIT软件及Vtflinc软件重构捕获压力的精度.结果表明, 改进的热动力学模拟古压力方法较其他两种方法可以有效地提高捕获压力预测的精度.考虑到石油包裹体甲烷摩尔含量难获取问题, 利用改进后的方法结合等效流体组分约束条件是重构捕获压力的理想方法组合.

       

    • 图  1  石油包裹体热动力学模拟示意(Ping et al., 2011)(a)和典型的石油流体P-T相图(b)阐述了油包裹体显微测温和体积分析需要的不同.参数气/液不混溶线由泡点线和露点线组成,临界点位于泡点线和露点线的交点

      油包裹体P-T路径通过等容线来表示,其中3个比较重要的点是油包裹体捕获点(Pt, Tt)、均一化点(Ph, Th)和室温下测定的气泡充填度P-T位置点(Pv, Tv)

      Fig.  1.  Schematic view for petroleum inclusion thermodynamic modeling (Ping et al., 2011) (a) and the typical P-T phase diagram of a petroleum, illustrating the different elements required for the analysis of microthermometric and volumetric data (b)

      表  1  不同方法劈分C7+组分结果比较

      Table  1.   Comparison results for splitting hydrocarbon plus fraction using different methods

      Al-Meshari(2005) Whitson(1983)方法 α-β模型 Katz(1983)方法 Ahmed(1989)方法
      流体编号 α β Cn+ ARD AAD ARD AAD ARD AAD ARD AAD
      1 0.81 0.80 C36+ -4.36 18.45 -67.68 24.76 -32.91 51.32 -0.37 16.74
      2 0.89 0.80 C30+ -2.58 26.78 -16.13 25.83 -32.99 62.07 -8.75 30.11
      3 0.79 0.63 C20+ 6.24 14.20 -10.67 21.15 -2.52 14.33 -2.09 10.99
      4 0.88 0.68 C20+ 9.63 17.96 9.42 17.24 -10.25 22.64 2.42 9.22
      5 0.95 0.80 C20+ 8.31 20.67 -12.41 21.65 7.81 45.61 7.33 12.87
      6 0.95 0.79 C20+ 8.62 15.86 -13.75 21.65 5.63 46.98 6.00 11.55
      7 0.94 0.72 C30+ 13.03 20.01 46.09 64.44 -34.54 48.93 -4.92 12.20
      8 0.97 0.80 C36+ 0.39 9.38 -1.87 42.41 -42.78 75.76 -11.68 21.85
      9 0.97 0.79 C45+ 10.30 22.76 -6.37 40.27 -43.53 95.01 -3.17 18.97
      10 0.96 0.67 C36+ 12.40 18.01 17.54 41.79 -43.03 69.93 -4.30 11.50
      平均值 6.19 18.41 -5.58 32.12 -22.91 53.26 -1.95 15.60
      下载: 导出CSV

      表  2  石油饱和条件下压力-温度-组分实验数据来源

      Table  2.   References of experimental data from the literature

      下载: 导出CSV

      表  3  计算未改进α-β组分模型中单个碳数组分(C7~C500)动力学参数方法

      Table  3.   Methods for calculating the thermodynamics parameters of SCN (C7 to C500) for unimproved α-β composition model

      方法 正常沸点温度(Tb) 临界温度(Tc) 临界压力(Pc) 偏心因子(ω)
      Thiéry et al.(2002) - - - -
      T-method 1 Twu (1984) Twu (1984) Twu (1984) Kesler-Lee (1976)
      T-method 2 Twu (1984) Kesler-Lee (1976) Kesler-Lee (1976) Kesler-Lee (1976)
      T-method 3 Pedersen (1985) Pedersen (1989) Pedersen (1989) Kesler-Lee (1976)
      T-method 4 Pedersen (1985) Kesler-Lee (1976) Kesler-Lee (1976) Kesler-Lee (1976)
      下载: 导出CSV

      表  4  石油饱和条件下压力-温度-组分实验数据来源

      Table  4.   References of experimental data from the literature (P-T-composition conditions of petroleum saturations)

      下载: 导出CSV

      表  5  不同方法预测饱和压力误差分析

      Table  5.   Error analysis of different methods for calculation of saturation pressures

      Model-1 Model-2 Thiéry et al. (2002) T-method 1 T-method 2 T-method 3 T-method 4
      ARD -0.64 -1.51 8.70 -23.47 -9.39 3.85 -6.27
      AAD 6.23 5.12 29.50 23.65 12.56 10.56 10.95
      下载: 导出CSV

      表  6  用于改进和验证模型的输入组分范围

      Table  6.   Composition range used for developing and testing the proposed model

      用于改进模型的数据范围(mol%) 验证改进模型数据范围(mol%)
      最小值 平均值 最大值 最小值 平均值 最大值
      N2 0.00 0.50 3.95 0.00 0.91 3.91
      CO2 0.00 1.17 9.11 0.05 1.61 3.67
      H2S 0.00 0.20 4.99 0.00 0.56 4.99
      C1 0.64 35.59 74.18 6.20 46.38 70.20
      C2 0.56 7.68 14.09 1.63 9.21 14.09
      C3 0.43 6.21 11.87 1.18 6.30 10.48
      C4 0.95 4.47 8.43 1.25 4.19 8.40
      C5 0.40 3.19 6.65 0.82 2.80 5.85
      C6 0.00 3.07 6.65 0.59 2.22 4.84
      C7+ 9.87 37.97 84.41 9.87 25.90 67.69
      温度(℃) 26.70 84.08 156.67 26.70 94.87 132.50
      饱和压力(MPa) 0.55 17.88 51.39 9.69 25.78 46.68
      下载: 导出CSV

      表  7  利用T-method 3方法计算的捕获压力误差分析

      Table  7.   Error analysis of trapping pressure reconstruction for T-method 3

      Th, oil (℃) 80 80 80 120 120 120
      Tt (℃) 95 110 125 135 150 165
      AAD%(Pt) 12.05 12.24 13.13 11.43 11.50 11.56
      ACD%(P sat) 8.08 6.21 5.06 8.50 6.78 5.68
      ACD%(Piso) 4.34 6.34 7.20 3.42 5.02 6.08
      下载: 导出CSV

      表  8  利用Vtflinc软件计算的捕获压力误差分析

      Table  8.   Error analysis of trapping pressure construction for Vtflinc software

      Th, oil (℃) 80 80 80 120 120 120
      Tt (℃) 95 110 125 135 150 165
      AAD%(Pt) 10.70 9.52 9.24 7.84 8.08 7.80
      ACD%(Psat) 7.38 5.23 4.08 5.96 4.39 3.52
      ACD%(Piso) 3.55 4.59 5.38 2.24 3.15 3.68
      下载: 导出CSV

      表  9  不同的约束组分模拟的方法列表

      Table  9.   Methods for trapping pressure reconstruction with different constraint on composition modeling

      捕获压力重构方法 输入参数 组分约束条件
      本文方法 Th, oilFvTt 真实流体中甲烷的摩尔百分含量等效流体中甲烷的摩尔百分含量
      Thiéry et al.(2000, 2002)PIT软件 Th, oilFvTt 真实流体中甲烷的摩尔百分含量等效流体中甲烷的摩尔百分含量
      Aplin et al.(1999)Vtflinc软件 输入组分、Th, oilFvTt 真实流体及其各组分热动力学参数(TcPcω)等效流体组分及各组分热动力学参数(TcPcω)
      下载: 导出CSV

      表  10  不同方法重构捕获压力的总体误差分析

      Table  10.   Global error analysis of trapping pressure reconstruction for different methods

      捕获压力重构方法 本文方法 Thiéry et al.(2000, 2002)PIT软件 Aplin et al.(1999)Vtflinc软件
      组分约束条件 C1%(mol)-等效流体 C1%(mol)-真实流体 C1%(mol)-等效流体 C1%(mol)-真实流体 C1%(mol)-等效流体 C1%(mol)-真实流体
      最小绝对误差(AD%) 0.08 0.03 0.47 0.55 0.75 0.13
      最大绝对误差(AD%) 39.73 26.47 84.24 89.52 62.25 28.59
      平均绝对误差(AAD%) 12.06 6.46 20.58 14.12 19.91 7.84
      下载: 导出CSV
    • [1] Agarwal, R., Li, Y., Nghiem, L., 1990. A Regression Technique with Dynamic Parameter Selection for Phase-Behavior Matching. SPE Reservoir Engineering, 5(1): 115-120. doi: 10.2118/16343-MS
      [2] Ahmed, T., 1989. Hydrocarbon Phase Behavior. Gulf Pub. Co., Houston.
      [3] Ahmed, T., Cady, G., Story, A., 1985. A Generalized Correlation for Characterizing the Hydrocarbon Heavy Fraction, SPE Annual Technical Conference and Exhibition. SPE, Las Vegas, Nevada, 14266-MS. doi: 10.2118/14266-MS
      [4] Al-Meshari, A.A., Armco, S., MaCain, W.D., 2007. Validation of Splitting the Hydrocarbon Plus Fraction: First Step in Tuning Equation-of-State, SPE Middle East Oil and Gas Show and Conference. SPE, Kingdom of Bahrain, 104631. doi: 10.2118/104631-MS
      [5] Al-Meshari, A., 2004. New Strategic Method to Tune Equation-of-State to Match Experimental Data for Compositional Simulation, Texas A & M University, USA, 248.
      [6] Al-Meshari, A.A., McCain, W.D., 2005. New Strategic Method to Tune Equation-of-State for Compositional Simulation, SPE Technical Symposium of Saudi Arabia Section. SPE, Dhahran, Saudi Arabia. doi: 10.2118/106332-MS
      [7] Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
      [8] Avaullee, L., Neau, E., Jaubert, J.N., 1997. Thermodynamic Modeling for Petroleum Fluids II. Prediction of PVT Properties of Oils and Gases by Fitting One or Two Parameters to the Saturation Pressures of Reservoir fluids. Fluid Phase Equilibria, 139(1-2): 171-203. doi: 10.1016/S0378-3812(97)00170-2
      [9] Baron, M., Parnell, J., Mark, D., et al., 2008. Evolution of Hydrocarbon Migration Style in a Fractured Reservoir Deduced from Fluid Inclusion Data, Clair Field, West of Shetland, UK. Marine and Petroleum Geology, 25(2): 153-172. doi: 10.1016/j.marpetgeo.2007.05.010
      [10] Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination Through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. doi: 10.1111/j.1468-8123.2007.00204.x
      [11] Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003
      [12] Cavett, R., 1962. Physical Data for Distillation Calculations-Vapor-Liquid Equilibria, Proc. 27th Annual Meeting, American Petroleum Institute, Dallas, 351-366.
      [13] Coats, K., Smart, G., 1986. Application of a Regression-Based EOS PVT Program to Laboratory Data. SPE Reservoir Engineering, 1(3): 277-299. doi: 10.2118/11197-PA
      [14] Danesh, A., Xu, D. Todd, A., 1992. A Grouping Method to Optimize Oil Description for Compositional Simulation of Gas-Injection Processes. SPE Reservoir Engineering, 7(3): 343-348. doi: 10.2118/20745-PA
      [15] Drohm, J.K., Goldthorpe, W.H., Trengove, R., 1988. Enhancing the Evaluation of PVT Data, Offshore South East Asia Show Singapore, 17685-MS. doi: 10.2118/17685-MS
      [16] Elsharkawy, A.M., 2003. An Empirical Model for Estimating the Saturation Pressures of Crude Oils. Journal of Petroleum Science and Engineering, 38(1-2): 57-77. doi: 10.1016/S0920-4105(03)00035-4
      [17] Ferket, H., Guilhaumou, N., Roure, F., et al., 2011. Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Cordoba Petroleum System (Ne Mexico). Marine and Petroleum Geology, 28(4): 936-958. doi: 10.1016/j.marpetgeo.2010.01.020
      [18] George, S.C., Dutkiewicz, A., Volk, H., et al., 2009. Oil-Bearing Fluid Inclusions from the Palaeoproterozoic: A Review of Biogeochemical Results from Time-Capsules > 2.0 Ga Old. Science in China Series D-Earth Sciences, 52(1): 1-11. doi: 10.1007/s11430-009-0004-4
      [19] George, S.C., Volk, H., Dutkiewicz, A., et al., 2008. Preservation of Hydrocarbons and Biomarkers in Oil Trapped Inside Fluid Inclusions for > 2 Billion Years. Geochimica et Cosmochimica Acta, 72(3): 844-870. doi: 10.1016/j.gca.2007.11.021
      [20] Goldstein, R.H., Reynolds, T.J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals, SEM Short Course 31. Society of Sedimentary Geology (SEPM), Tulsa, 199.
      [21] Guilhaumou, N., Dumas, P., 2005. Synchrotron FTIR Hydrocarbon Fluid Inclusion Microanalysis Applied to Diagenetic History and Fluid Flow Reconstruction in Reservoir Appraisal. Oil & Gas Science and Technology, 60(5): 763-779. doi: 10.2516/ogst:2005054
      [22] Hoffman, A., Crump, J., Hocott, C., 1953. Equilibrium Constants for a Gas-Condensate System. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 198: 1-10.
      [23] Hong, K., 1982. Lumped-Component Characterization of Crude Oils for Compositional Simulation, SPE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 10691-MS. doi: 10.2118/10691-MS
      [24] Jacopy, R.H., Berry, V.J., 1958. A Method for Predicting Pressure Maintenance for Reservoirs Producing Volatile Oil. Petroleum Transactions, Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 213: 59-65.
      [25] Jaubert, J.N., Avaullee, L., Souvay, J.F., 2002. A Crude oil Data Bank Containing More than 5 000 PVT and Gas Injection Data. Journal of Petroleum Science and Engineering, 34(1-4): 65-107. doi: 10.1016/S0920-4105(02)00153-5
      [26] Jaubert, J.N., Neau, E., Avaullee, L., et al., 1995. Characterization of Heavy Oils. 3. Prediction of Gas Injection Behavior: Swelling Test, Multicontact Test, Multiple-Contact Minimum Miscibility Pressure, and Multiple-Contact Minimum Miscibility Enrichment. Industrial & Engineering Chemistry Research, 34(11): 4016-4032. doi: 10.1021/ie00038a043
      [27] Jhaveri, B., Youngren, G., 1988. Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions. SPE Reservoir Engineering, 3(3): 1033-1040. doi: 10.2118/13118-PA
      [28] Karlsen, D.A., Nedkvitne, T., Larter, S.R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. doi: 10.1016/0016-7037(93)90146-N
      [29] Katz, D., 1983. Overview of Phase Behavior in Oil and Gas Production. Journal of Petroleum Technology, 35(6): 1205-1214. doi: 10.2118/9995-PA
      [30] Katz, D., Firoozabadi, A., 1978. Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients. Journal of Petroleum Technology, 30(11): 1649-1655. doi: 10.2118/6721-PA
      [31] Kay, W.B., 1936. Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure. Industrial & Engineering Chemistry, 28(8): 1014-1019. doi: 10.1021/ie50321a008
      [32] Li, Y., Nghiem, L., Siu, A., 1985. Phase Behavior Computations for Reservoir Fluids: Effect of Pseudo-Components on Phase Diagrams and Simulation Results. Journal of Canadian Petroleum Technology, 24(6): 29-36. http://www.researchgate.net/publication/250091952_Phase_Behaviour_Computations_For_Reservoir_Fluids_Effect_Of_Pseudo-Components_On_Phase_Diagrams_And_Simulation_Results
      [33] Lisk, M., O'Brien, G.W., Eadington, P.J., 2002. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 86(9): 1531-1542. doi: 10.1306/61eedcec-173e-11d7-8645000102c1865d
      [34] McCain, W.D., 1994. Heavy Components Control Reservoir Fluid Behavior. Journal of Petroleum Technology, 46: 746-750. doi: 10.2118/28214-PA
      [35] McLimans, R.K., 1987. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Applied Geochemistry, 2(5-6): 585-603. doi: 10.1016/0883-2927(87)90011-4
      [36] Moharam, H.M., Fahim, M.A., 1995. Prediction of Viscosity of Heavy Petroleum Fractions and Crude Oils Using a Corresponding States Method. Industrial & Engineering Chemistry Research, 34(11): 4140-4144. doi: 10.1021/ie00038a061
      [37] Montel, F., 1993. Phase Equilibria Needs for Petroleum Exploration and Production Industry. Fluid Phase Equilibria, 84: 343-367. doi: 10.1016/0378-3812(93)85132-6
      [38] Munz, I.A., Johansen, H., Johanse, I., 1999. Characterisation of Composition and PVT Properties of Petroleum Inclusions: Implications of Reservoir Filling and Compartmentalisation, SPE Annual Technical Conference and Exhibition. SPE, Houston, Texas, 56519-MS. doi: 10.2118/56519-MS
      [39] Munz, I.A., Wangen, M., Girard, J.P., et al., 2004. Pressure-Temperature-Time-Composition (P-T-t-X) Constraints of Multiple Petroleum Charges in the Hild Field, Norwegian North Sea. Marine and Petroleum Geology, 21(8): 1043-1060. doi: 10.1016/j.marpetgeo.2004.05.006
      [40] Neau, E., Jaubert, J.N., Rogalski, M., 1993. Characterization of Heavy Oils. Industrial & Engineering Chemistry Research, 32(6): 1196-1203. doi: 10.1021/ie00018a027
      [41] Péneloux, A., Rauzy, E., Fréze, R., 1982. A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equilibria, 8(1): 7-23. doi: 10.1016/0378-3812(82)80002-2
      [42] Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A Study of the Gross Compositions of Oil-Bearing Fluid Inclusions Using High Performance Liquid Chromatography. Organic Geochemistry, 29(5-7): 1149-1161. doi: 10.1016/S0146-6380(98)00135-1
      [43] Parnell, J., Carey, P.F., Monson, B., 1996. Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins. Chemical Geology, 129(3-4): 217-226. doi: 10.1016/0009-2541(95)00141-7
      [44] Pedersen, K.S., Blilie, A.L., Meisingset, K.K., 1992. PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated Compositional Data for the Plus Fraction. Industrial & Engineering Chemistry Research, 31(5): 1378-1384. doi: 10.1021/ie00005a019
      [45] Pedersen, K., Christensen, P., 2006. Phase Behavior of Petroleum Reservoir Fluids. CRC Press, Toylor & Francis, UK.
      [46] Pedersen, K., Fredenslund, A., Thomassen, P., 1989. Properties of Oils and Natural Gases, Contributions in Petroleum Geology & Engineering. Gulf Pub. Co., Houston, 252.
      [47] Pedersen, K.S., Rasmussen, P., Fredenslund, A., 1985. Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 3. Efficient Flash Calculation Procedures Using the SRK Equation of State. Industrial & Engineering Chemistry Process Design and Development, 24(4): 948-954. doi: 10.1021/i200031a009
      [48] Pedersen, K., Thomassen, P., Fredenslund, A., 1988. On the Danger of Tuning Equation of Sate Parameters. Chemical Engineering Science, 43: 269-278. doi: 10.1016/0009-2509(88)85039-5
      [49] Peng, D., Robinson, D., 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Research Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011
      [50] Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic Modelling of Petroleum Inclusions: The Prediction of the Saturation Pressure of Crude Oils. Geofluids, 11(3), doi: 10.1111/j.1468-8123.2011.00343.x
      [51] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012a. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science—Journal of China University of Geosciences, 37(1): 163-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201201020.htm
      [52] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012b. Individual Oil Inclusion Composition Prediction and Its Application in the Research of Oil and Gas Accumulation. Earth Science—Journal of China University of Geosciences, 37(4): 815-824. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204021.htm
      [53] Pironon, J., Canals, M., Dubessy, J., et al., 1998. Volumetric Reconstruction of Individual Oil Iinclusions by Confocal Scanning Laser Microscopy. European Journal of Mineralogy, 10: 1143-1150. doi: 10.1127/ejm/10/6/1143
      [54] Pironon, J., 2004. Fluid Inclusions in Petroleum Environments: Analytical Procedure for PTX Reconstruction. Acta Petrologica Sinica, 20(6): 1333-1342. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406002.htm
      [55] Riazi, M.R., Al-Sahhaf, T.A., 1996. Physical Properties of Heavy Petroleum Fractions and Crude Oils. Fluid Phase Equilibria, 117(1-2): 217-224. doi: 10.1016/0378-3812(95)02956-7
      [56] Riemens, W.G., Schulte, A.M., de Jong, L.N., 1988. Birba Field PVT Variations Along the Hydrocarbon Column and Confirmatory Field Tests. Journal of Petroleum Technology, 40(1): 83-88. doi: 10.2118/13719-PA
      [57] Rosenegger, L., Wu, R., 1999. Intergrated Oil PVT Data Characterization-Lessons from Four Case Histories. Journal of Canadian Petroleum Technology, 38(13): 97-05. http://www.researchgate.net/publication/240780849_Integrated_Oil_PVT_Characterization_-_Lessons_From_Four_Case_Histories
      [58] Sellwood, B.W., Wilkes, M., James, B., 1993. Hydrocarbon Inclusions in Late Calcite Cements: Migration Indicators in the Great Oolite Group, Weald Basin, S. England. Sedimentary Geology, 84(1-4): 51-55. doi: 10.1016/0037-0738(93)90044-6
      [59] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (Petroleum Inclusion Thermodynamic): A New Modeling Tool for the Characterization of Hydrocarbon Fluid Inclusions from Volumetric and Microthermometric Measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6
      [60] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1
      [61] Thomassen, P., Pedersen, K.S., Fredenslund, A., 1987. Adjustment of C7+ Molecular Weights in the Characterization of Petroleum Mixtures Containing Heavy Hydrocarbons. SPE: 16036-MS.
      [62] Tseng, H.Y., Pottorf, R.J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn—South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0
      [63] Vogel, J.L., Yarborough, L., 1980. The Effect of Nitrogen on the Phase Behavior and Physical Properties of Reservoir, SPE/DOE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 8815-MS. doi: 10.2118/8815-MS
      [64] Wang, L.S., Gmehling, J., 1999. Improvement of SRK Equation of State for Vapor-Liquid Equilibria of Petroleum Fluids. Aiche Journal, 45(5): 1125-1134. doi: 10.1002/aic.690450519
      [65] Whitson, C.H., 1983. Characterizing Hydrocarbon Plus Fractions. SPE, 23(4): 683-694. doi: 10.2118/12233-PA
      [66] William, D., McCain, J., 1990. The Properties of Petroleum Fluids, 2nd ed. Pennwell Publishing Company, Tulsa.
      [67] Williams, C.A., Zana, E.N., Humphrys, G.E., 1980. Use of the Peng-Robinson Equation of State to Predict Hydrocarbon Phase Behavior and Miscibility for Fluid Displacement, SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/8817-MS
      [68] Yang, T., Chen, W.D., Guo, T.M., 1997. Phase Behavior of a Near-Critical Reservoir Fluid Mixture. Fluid Phase Equilibria, 128(1-2): 183-197. doi: 10.1016/S0378-3812(96)03163-9
      [69] Zurita, R.A.A., William, D.M.J., 2002. An Efficient Tuning Strategy to Calibrate Cubic EoS for Compositional Simulation, SPE Annual Technical Conference and Exhibition. SPE, San Antonio, Texas, 77382. doi: 10.2118/77382-MS
      [70] 平宏伟, 陈红汉, 宋国奇, 等, 2012a. 油气充注成藏贡献度及其意义. 地球科学——中国地质大学学报, 37(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201020.htm
      [71] 平宏伟, 陈红汉, 宋国奇, 等, 2012b. 石油包裹体组分预测及其在油气成藏研究中的应用. 地球科学——中国地质大学学报, 37(4): 815-824.
    • 加载中
    图(1) / 表(10)
    计量
    • 文章访问数:  3440
    • HTML全文浏览量:  134
    • PDF下载量:  518
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-09-28
    • 刊出日期:  2013-01-15

    目录

      /

      返回文章
      返回