Formation Mechanism of the Oils in Tazhong-4 Oilfield Analyzed by High Resolution Mass Spectrum
-
摘要: 塔里木盆地塔中4油田位于塔中构造较高部位, 具有显著不同于周边原油的特征.采用高分辨率质谱、色谱-质谱等对原油成因进行了调查.GC/MS分析表明, 塔中4油田石炭系原油中链烷烃(指示未降解-轻度降解)极其发育, 同时检测到丰富的降解三环萜烷及25-降藿烷系列(指示强烈生物降解), 反映该区油气具有多期充注特征.高分辨率质谱分析显示, 塔中4油田原油中硫化物分布正常, 低等效双键数(DBE)硫化物不太发育, 天然气组成与碳同位素也未显示异常, 反映石炭系原油可能未受TSR作用影响.观察到塔中4油田原油中硫化物组成与分布特征多数与下奥陶统原油相近, 指示两者可能有一定成因联系.混源模拟实验显示, 下奥陶统原油混入可导致塔中4油田原油出现高芳香硫特征.地质地球化学综合研究认为, 塔中4油田原油中芳香硫异常与深源油气混合有关, 与TSR作用关系不明显.Abstract: The Carboniferous oil in the Tazhong-4 Oilfield situated in the tectonic high of the Tazhong uplift, is quite different from the surrounding oil. High resolution mass spectrum and GC-MS is utilized to reveal the genetic mechanism of the oil. It is observed that the Tazhong-4 oil are abundant in both n-alkanes (suggesting no or little biodegradation) and biodegraded tricyclic terpanes as well as 25-norhopanes (indicating strong biodegradation) based on GC-MS analysis, which suggests multiple phases of petroleum charging in the area. No abnormal sulfur compounds are detected from the Tazhong-4 oils by FT-ICR MS, namely little sulfur compounds with low values of double-bond equivalent (DBE) detected, and no abnormality is observed for the gases associated with the Tazhong oil from views of both the composition as well as distribution and the stable carbon isotope, which suggests no or little TSR alteration of the Tazhong-4 Carboniferous oil. It is also found that the composition and relative distribution of the sulfur compounds in the Tazhong-4 oilfield is similar to that of the majority of the Lower Ordovician oil, suggesting a genetic affinity between them. It has been testified by experiments that oil-mixing of deep oil such as the Low Ordovician oil with the shallow oil could result in a kind of high dibenzothiophen (DBT) oil like the Tazhong-4 oil. After a comprehensive geochemical and geological investigation, we believe that it was deep oil-mixing that caused the unusually high DBT oil in the Tazhong-4 oilfield rather than TSR.
-
Key words:
- Tazhong uplift /
- Carboniferous oil /
- high resolution mass spectrum /
- maturity /
- dibenzothiophen /
- petroleum geology
-
图 7 芳烃馏分中二苯并噻吩、全油中DBE=9(DBE9)系列S1化合物相对丰度与饱/芳比关系(非石炭系数据源自Li et al., 2011b)
Fig. 7. Relative abundance of DBTs in aromatic fractions and DBE=9 compounds among S1 versus saturated hydrocarbons/aromatics ratio
表 1 塔中4油田石炭系原油基本特征
Table 1. Basic characteristics of the Carboniferous oils from the Tazhong-4 oilfield
井号 井段(m) 层位 密度(20 ℃)(g/cm3) 粘度(50 ℃)(mm2/s) 凝固点(℃) 硫醇(μg/mL) 饱和烃(%) 芳烃(%) 非烃(%) 沥青质(%) αααS/R DBT(μg/g) DBT(%) DBT/P TZ406 3 646.92~3 693.26 CⅢ 0.91 3.85 - - 23.1 32.7 11.5 32.7 0.53 861 42.1 0.94 TZ404 3 619.47~3 681.81 CⅡ-Ⅲ - - - - 55.5 28.2 11.8 4.5 0.51 3 790 46.2 2.59 TZ4 3 532~3 548 CⅡ 0.85 3.12 -25.0 - 74.8 19.5 5.7 0 0.47 4 230 29.8 1.52 TZ4 3 712~3 720 CⅢ 0.92 51.19 10.5 - 58.0 25.7 12.7 3.6 0.53 4132 51.7 2.53 TZ408 3 631.5~3 632.5 CⅢ 0.85 3.76 < -30.0 - 58.9 26.3 12.1 2.7 0.53 3 923 45.2 2.52 TZ402 3 510~3 535 CⅡ 0.83 2.56 -34.0 55.9 30.5 13.6 0 0.52 4 058 44.6 2.66 TZ402 3 613~3 628 CⅢ 0.84 2.81 -19.0 1.63 55.7 28.6 11.4 4.3 0.53 4 168 44.5 2.68 TZ402 3 705.5~3 708 CⅢ 0.92 72.05 -21.5 36.0 24.6 10.3 29.1 0.55 2 670 42.7 2.59 TZ421 3 221.0~3 223.5 CⅠ 0.82 4.75 -36.0 52.6 25.3 10.5 11.6 0.53 2 685 41.8 2.16 TZ421 3 478~3 494.5 CⅡ 0.75 0.91 -45.0 1.60 86.4 10.2 3.4 0 0.49 3 419 19.6 1.12 TZ421 3 570.5~3 575.0 CⅢ 0.84 2.85 -16.0 - 57.8 30.4 11.8 0 0.52 4 190 40.0 2.17 TZ421 3 700.5~3 702.5 CⅢ - - - 1.63 59.3 22.9 8.5 9.3 0.51 2 820 11.3 0.34 TZ422 3 604.0~3 624.0 CⅢ - - - - 54.3 32.6 10.1 2.9 0.54 3 809 45.8 2.76 TZ75 3 701.00~3 715 CⅢ 0.86 6.25 -14.0 - 46.5 32.6 11.6 9.3 0.51 4 590 44.8 2.96 TZ401 3 685~3 703 CⅢ 0.90 11.93 -5.0 - 40.4 31.7 15.4 12.5 0.53 6 243 54.1 4.56 TZ411 3 263~3 450 CⅠ - - - 52.1 27.6 9.8 10.4 0.52 2 938 41.9 1.76 TZ411 3 227.5~3 328 CⅠ 0.86 7.81 -18.0 36.4 38.6 14.8 10.2 0.52 3 320 40.6 2.24 TZ411 3 439~3 450 CⅠ 0.83 4.37 -10.0 48.7 31.1 11.8 8.4 0.53 3 131 42.2 1.93 TZ411 3 720~3 723 CⅢ 0.87 9.9 -12.5 - 60.9 25.4 6.5 7.1 0.54 4 711 53.8 4.75 注:表中αααS/R.C29甾烷ααα20S/(S+R);DBT/P.二苯并噻吩/菲;DBT(μg/g).二苯并噻吩在原油中的绝对丰度;DBT.二苯并噻吩在可定性芳烃中的百分含量. 表 2 常规GC/MS、FT-ICR MS检测的塔中83井原油(O1)中的含硫化合物对比
Table 2. Correlation of the sulfur compounds from the TZ83 (O1) oil detected by GC-MS and FT-ICR MS
含硫化合物类型 检测途径 硫化合物中的杂原子类型及数量 化合物名称 等价双键数DBE GC/MS(可检测碳数) FT-ICR MS(可检测碳数) S1 硫醚 0 - + C11~C40 环硫醚(四氢化噻吩) 1 + C10~C30 + C8~C46 2 - + C11~C45 噻吩 3 - + C9~C45 4 - + C12~C43 5 - + C11~C43 苯并噻吩 6 - + C9~C44 7 - + C9~C43 8 - + C14~C43 二苯并噻吩 9 + C12~C15 + C10~C47 10~11 - + C12~C44 12 - + C14~C44 13 - + C14~C41 14 - + C16~C44 15 - + C18~C42 16 - + C19~C41 17 - + C20~C41 18 - + C23~C40 19 - + C25~C40 O1S1 0~14 C8~C40* O1S2 4~9 - + C7~C29* O2S1 1~10 - + C11~C37* O3S1 2~7 C5~C28* S2 8~10 - + C13~C46* S3 7 C23~C48 注:“-”.未能检测;“+”.可检测;“*”.因化合物的DBE值而异. 表 3 三元混合模拟实验参数
Table 3. Parameters for the binary and ternary oil mixing experiment
混合类型 端元素油 与配比类型 DBTs(μg/g) 芳烃(μg/g) DBT*(%) 饱和烃(%) 芳烃(%) 饱/芳 A(TZ15, S) 646.31 4 854 13.31 36.1 30.9 1.17 端元油 B(TZ4, CⅡ) 4 230.00 14 179 29.83 74.8 19.5 3.84 C(ZG5, O1) 2 021.00 3 585 56.37 96.36 2.18 44.17 A∶B∶C=0.5∶0.5∶9 206 271.55 417 815 49.37 92.269 4.482 20.59 三元 配比油 A∶B∶C=1∶1∶8 210 443.10 477 130 44.11 88.178 6.784 13.00 A∶B∶C=1.5∶1.5∶7 214 614.65 536 445 40.01 84.087 9.086 9.25 A∶C=1∶9 1 883.531 3 684.9 51.11 90.3 5.1 17.88 二元 配比油 A∶C=2∶8 1 746.062 3 784.8 46.13 84.3 7.9 10.64 A∶C=3∶7 1 608.593 3 884.7 41.41 78.3 10.8 7.25 注:*.相对于GC/MS检测的芳烃馏分中可定性芳烃化合物总和. -
[1] Alexander, C., Noriyuki, S., 1995. Aromatic Sulfur Compounds as Maturity Indicators for Petroleum from the Buzuluk Depression, Russia. Organic Geochemistry, 23(7): 617-625. doi: 10.1016/0146-6380(95)00050-O [2] Bjorφy, M., Williams, J.A., Dolcater, D.L., et al., 1996. Maturity Assessment and Characterization of Big Horn Basin Palaeozoic Oils. Marine and Petroleum Geology, 13(1): 3-23. doi: 10.1016/0264-8172(95)00018-6 [3] Cai, C.F., Worden, R.H., Bottrell, S.H., et al., 2003. Thermochemical Sulphate Reduction and the Generation of Hydrogen Sulphide and Thiols (Mercaptans) in Triassic Carbonate Reservoirs from the Sichuan Basin, China. Chem. Geol. , 202(1-2), 39-57. doi: 10.1016/S0009-2541(03)00209-2 [4] Cai, C. F, Wu, G.H., Li, K.K., et al., 2007. Thermochemical Sulfate Reduction and Origin of Sulfur in Crude Oils in Palaeozoic Carbonates. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200701004.htm [5] Cai, C.F., Hu, W.H., Worden, R.H., 2001. Thermochemical Sulphate Reduction in Cambro-Ordovician Carbonates in Central Tarim. Marine and Petroleum Geology, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9 [6] Cai, C.F., Zhang, C.M., Cai, L.L., et al., 2009. Origins of Palaeozoic Oils in the Tarim Basin: Evidence from Sulfur Isotopes and Biomarkers. Chemical Geology, 268: 197-210. doi: 10.1016/j.chemgeo.2009.08.012 [7] Ho, T.Y., Rogers, M.P., Drushel, H.V., et al., 1974. Evolution of Sulfur Compounds in Crude Oils. AAPG Bull., Pet. Geol. , 58, 2338-2348. http://www.researchgate.net/publication/264739320_Evolution_of_Sulfur_Compounds_in_Crude_Oils [8] Jiang, N.H., Zhu, G.Y., Zhang, S.C., et al., 2007. Identification and Geological Significance of 2-Sulfo-Diamantane Detected from the Oil from the TZ83 Well of the Tazhong Uplift in the Tarim Basin. Science Bulletin, 52(24): 2871-2875 (in Chinese with English abstract). http://www.researchgate.net/publication/309109209_Identification_and_geological_significance_of_2-sulfo-diamantane_detected_from_the_oil_from_the_TZ83_well_of_the_Tazhong_Uplift_in_the_Tarim_Basin [9] Jiang, Z.X., Yang, J., Pang, X.Q., et al., 2008. Property Differences and Genetic Mechanisms of Hydrocarbon in Each Oil Unit of the Carboniferous in Tazhong-4 Oilfield. Oil & Gas Geology, 29(2): 159-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200802001.htm [10] Kim, S., Stanford, L.A., Rodgers, R.P., et al., 2005. Microbial Alteration of the Acidic and Neutral Polar NSO Compounds Revealed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Organic Geochemistry, 36: 1117-1134. doi: 10.1016/j.orggeochem.2005.03.010 [11] Li, J.G., 2000. Research Development and Prospect of Maturity Parameters of Methylated Dibenzothiophenes in Marine Carbonate Rocks. Acta Sedimentologica Sinica, 18(3): 480-483 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200003026.htm [12] Li, M.W., Cheng, D.S., Pan, X.H., et al., 2010. Characterization of Petroleum Acids Using Combined FT-IR, FT-ICR MS and GC-MS: Implications for the Origin of High Acidity Oils in the Muglad Basin, Sudan. Organic Geochemistry, 41(9): 959-965. doi: 10.1016/j.orggeochem.2010.03.006 [13] Li, S.M., Li, M.W., Pang, X.Q., et al., 2009. Origin of Crude Oils with Unusually High Dibenzothiophene Concentrations in the Tazhong Uplift, Tarim Basin. Journal of Geochemical Exploration, 101: 60. doi: 10.1016/j.gexplo.2008.12.053 [14] Li, S.M., Pang, X.Q., Jin, Z.J., et al., 2010. Petroleum Source in the Tazhong Uplift, Tarim Basin: New Insights from Geochemical and Fluid Inclusion Data. Organic Geochemistry, 41(6): 531-553. doi: 10.1016/j.orggeochem.2010.02.018 [15] Li, S.M., Pang, X.Q., Shi, Q., et al., 2011a. Characterization Sulfur Compounds of the Crude Oils in the Tarim Basin by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Their Geochemical Significance. Energy Exploration and Eexploitation, 29(6): 711-741. doi: 10.1260/0144-5987.29.6.711 [16] Li, S.M., Pang, X.Q., Shi, Q., et al., 2011b. Origin of the Unusual High Dibenzothiophene Concentration in Lower Ordovician Oils of the Tazhong Uplift, Tarim Basin. Petroleum Science, 8: 382-391. doi: 10.1007/s12182-011-0170-9 [17] Li, S.M., Xiao, Z.Y., Lv, X.X., et al., 2011c. Geochemical Characteristics and Origin of Hydrocarbons from Lower Ordovician in Tazhong Area, Tarim Basin. Xinjiang Petroleum Geology, 3(32): 272-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201103015.htm [18] Li, S.M., Xiao, Z.Y., Zhang, B.S., et al., 2011d. Geochemical Characteristics and Affecting Factors of the Unusually High Dibenzothiophenes Oils in the Tazhong Uplift. Geoscience, 25(6): 1108-1120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201106009.htm [19] Li, S.M., Pang, X.Q., Yang, H.J., et al., 2010. Generation, Migration and Accumulation Model for the Marine Oils in the Tarim Basin. Earth Science—Journal of China University of Geosciences, 35(4): 1-11 (in Chinese with English abstract). [20] Liu, P., Xu, C.M., Shi, Q., et al., 2010a. Characterization of Sulfide Compounds in Petroleum: Selective Oxidation Followed by Positive-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. , 82: 6601-6606. doi: 10.1021/ac1010553 [21] Liu, P., Shi, Q., Chung, K.H., et al., 2010b. Molecular Characterization of Sulfur Compounds in Venezuela Crude Oil and Its SARA Fractions by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 24: 5089-5096. doi: 10.1021/ef100904k [22] Manzano, B.K., Machel, H.G., Fowler, M.G., 1997. The Influence of Thermochemical Sulphate Reduction on Hydrocarbon Composition in Nisku Reservoirs, Brazeau River Area, Alberta, Canada. Organic Geochemistry, 27: 507-521. doi: 10.1016/S0146-6380(97)00070-3 [23] Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Inc., New Jersey, 237-241. [24] Radke, M., Welte, D, H., Willsch, H., 1986. Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type. Organic Geochemistry, 10(1-3), 51-63. doi: 10.1016/0146-6380(86)90008-2 [25] Sheng, G.Y., Fu, J.M., Brassell, S., et al., 1986. Lon Alkyl-Thiopheneoid Compounds Found in Sulphur-High Chypersaline Basin. Geochimica, 2: 138-146 (in Chinese). [26] Shi, Q., Pan, N., Liu, P., et al., 2010a. Characterization of Sulfur Compounds in Oilsands Bitumen by Methylation Followed by Positive-Ion Electrospray Ionization and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 24: 3014-3019. doi: 10.1021/ef9016174 [27] Shi, Q., Hou, D.J., Chung, K.H., et al., 2010b. Characterization of Heteroatom Compounds in a Crude Oil and Its Saturates, Aromatics, Resins, and Asphaltenes (SARA) and Non-Basic Nitrogen Fractions Analyzed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 24: 2545-2553. doi: 10.1021/ef901564e [28] Song, Z.G., Wang, M.C., Liu, Z.F., 2007. Thermal Evolution of Typical Organic Sulfur Compounds Studied by Hydrous Pyrolysis. Geochimica, 36(3): 247-252 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX200703002.htm [29] Worden, R.H., Smalley, P.C., 1996. H2S-Producing Reactions in Deep Carbonate Gas Reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology, 133: 157-171. doi: 10.1016/S0009-2541(96)00074-5 [30] Xia, Y., Wang, C.J., Meng, Q.X., et al., 1999. The Simulation on the Mechanism of Formation of Thiophene Series Compounds. Geochimica, 28(4): 393-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX199904010.htm [31] Xing, Q.Y., Xu, R.Q., Zhou, Z., et al., 1994. Fundamental Organic Chemistry. Advanced Education Press, Beijing, 869-916 (in Chinese). [32] Zhang, J., Pang, X.Q., Liu, L.F., et al., 2004. Distribution and Petroleum Significance of Silurian Tar Sand in Tarim Basin. Science in China(Ser. D), 34(S1): 169-176 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG2004S2019.htm [33] Zhang, M., Zhang, J., 1999. Composition Characteristics and Geochemical Significance of Thiophene Type Compounds for Crude Oils in Tarim Basin. Acta Sedimentologica Sinica, 17(3): 121-126 (in Chinese with English abstract). http://www.researchgate.net/publication/292249087_Composition_characteristics_and_geochemical_significance_of_thiophene-type_compounds_for_crude_oils_in_Tarim_Basin [34] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006. Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR: An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin. Acta Petrologica Sinica, 22(8): 2182-2194 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200608008 [35] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006. Distribution of High H2S-Bearing Natural Gas and Evidence of TSR Origin in the Sichuan Basin. Acta Geological Sinica, 80(8): 1208-1218 (in Chinese with English abstract). http://www.researchgate.net/publication/289133873_Distribution_of_high_H2S-bearing_natural_gas_and_evidence_of_TSR_origin_in_the_Sichuan_Basin [36] Zhu, Y.M., 1996. Geochemical Characteristics of Aromatic Hydrocarbon from Oil in Tarim Basin. Geochimica, 25(1): 10-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DQHX601.001&dbcode=CJFD&year=1996&dflag=pdfdown [37] Zhu, Y.M., Zhang, H.B., Fu, J.M., et al., 1998a. Distribution and Composition of Aromatic Hydrocarbons in Various Oils from Tarim Basin. Acta Petrolei Sinic, 20(3): 253-257 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0140670199909530 [38] Zhu, Y.M., Fu, J.M., Sheng, G.Y., 1998b. Geochemical Significance of Organic Sulfur Compounds in the Tarim oils. Experimental Petroleum Geology, 20(3): 253-257 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sysd803.008.htm [39] 蔡春芳, 邬光辉, 李开开, 等, 2007. 塔中地区古生界热化学硫酸盐还原作用与原油中硫的成因. 矿物岩石地球化学通报, 26(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200701004.htm [40] 姜乃煌, 朱光有, 张水昌, 等, 2007. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义. 科学通报, 52(24): 2871-2875. doi: 10.3321/j.issn:0023-074x.2007.24.009 [41] 姜振学, 杨俊, 庞雄奇, 等, 2008. 塔中4油田石炭系各油组油气性质差异及成因机制. 石油与天然气地质, 29(2): 159-166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200802001.htm [42] 李景贵, 2000. 海相碳酸盐岩二苯并噻吩类化合物成熟度参数研究进展与展望. 沉积学报, 18(3): 480-483. doi: 10.3969/j.issn.1000-0550.2000.03.027 [43] 李素梅, 庞雄奇, 肖中遥, 等, 2011a. 塔中超高二苯并噻吩硫原油成因浅析. 现代地质, 25(6): 1108-1120. [44] 李素梅, 肖中尧, 吕修祥, 等, 2011b. 塔中地区下奥陶统油气地球化学特征成因. 新疆石油地质, 3 (32): 272-276. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103015.htm [45] 李素梅, 庞雄奇, 杨海军, 等, 2010. 塔里木盆地海相油气源与混源成藏模式. 地球科学, 35(4): 1-11. doi: 10.3799/dqkx.2010.081 [46] 盛国英, 傅家谟, 江继刚, 1986. 膏盐盆地高硫原油中的长链烷基噻吩类化合物. 地球化学, 2: 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198602004.htm [47] 宋之光, 王茂春, 刘祖发, 2007. 典型有机硫化合物热演化的加水热解实验研究. 地球化学, 36 (3): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200703002.htm [48] 夏燕青, 王春江, 孟仟祥, 等, 1999. 噻吩系列化合物的形成机理模拟. 地球化学, 28(4): 393-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199904010.htm [49] 邢其毅, 徐瑞秋, 周政, 等, 1994. 基础有机化学. 北京: 高等教育出版社, 869-916. [50] 张俊, 庞雄奇, 刘洛夫, 等, 2004. 塔里木盆地志留系沥青砂岩的分布特征与石油地质意义. 中国科学(D辑), 34(S1): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1019.htm [51] 张敏, 张俊, 1999. 塔里木盆地原油噻吩类化合物的组成特征及地球化学意义. 沉积学报, 17(3): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB901.018.htm [52] 朱扬明, 1996. 塔里木原油芳烃的地球化学特征. 地球化学, 25(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX601.001.htm [53] 朱扬明, 张洪波, 傅家谟, 等, 1998a. 塔里木不同成因原油芳烃组成和分布特征. 石油学报, 19(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB803.006.htm [54] 朱扬明, 傅家谟, 盛国英, 1998b. 塔里木原油含硫化合物的地球化学意义. 石油实验地质, 20(3): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD803.008.htm [55] 朱光有, 张水昌, 梁英波, 等, 2006a. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm [56] 朱光有, 张水昌, 梁英波, 等, 2006b. 四川盆地高含H2S天然气的分布与TSR成因证据. 地质学报, 80(8): 1208-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200608030.htm