• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征

    段毅 吴应忠 姚泾利 刘显阳 孙涛 何金先 徐丽 夏嘉 张晓丽

    段毅, 吴应忠, 姚泾利, 刘显阳, 孙涛, 何金先, 徐丽, 夏嘉, 张晓丽, 2013. 森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征. 地球科学, 38(1): 87-93. doi: 10.3799/dqkx.2013.008
    引用本文: 段毅, 吴应忠, 姚泾利, 刘显阳, 孙涛, 何金先, 徐丽, 夏嘉, 张晓丽, 2013. 森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征. 地球科学, 38(1): 87-93. doi: 10.3799/dqkx.2013.008
    DUAN Yi, WU Ying-zhong, YAO Jing-li, LIU Xian-yang, SUN Tao, HE Jin-xian, XU Li, XIA Jia, ZHANG Xiao-li, 2013. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1): 87-93. doi: 10.3799/dqkx.2013.008
    Citation: DUAN Yi, WU Ying-zhong, YAO Jing-li, LIU Xian-yang, SUN Tao, HE Jin-xian, XU Li, XIA Jia, ZHANG Xiao-li, 2013. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1): 87-93. doi: 10.3799/dqkx.2013.008

    森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征

    doi: 10.3799/dqkx.2013.008
    基金项目: 

    国家自然科学基金 40872092

    国家自然科学基金 41272125

    国家自然科学基金 40772069

    国家"973"项目 2005CB422105

    详细信息
      作者简介:

      段毅(1956-), 男, 博士生导师, 研究员, 主要从事油气地球化学和有机地球化学研究及教学工作.E-mail: duany@lzb.ac.cn

    • 中图分类号: P593

    Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages

    • 摘要: 煤层气的成因是石油地质学研究的热点.煤层气聚集存在着"累积聚气"和"阶段聚气"两种形式, 对于"阶段聚气" 的煤层气成因判识的地球化学研究还很薄弱.通过森林沼泽泥炭在不同温度下制备的样品进行热模拟实验, 首次获得了不同演化阶段甲烷、乙烷和二氧化碳的碳、氢同位素组成和演化规律.发现随着原始样品演化程度越高, 生成的甲烷和乙烷的碳、氢同位素组成具有变重的趋势; 同时, 甲烷和乙烷碳同位素组成明显地受原始样品演化程度的影响, 而氢同位素组成主要与成熟度密切相关.确定了成煤有机质在不同演化阶段生成的气体碳、氢同位素组成.首次获得了成煤有机质不同演化阶段热解气体碳、氢同位素组成与Ro之间的关系式.建立了甲烷与乙烷的碳、氢同位素之间的关系式, 形成了甲烷碳、氢同位素组成相关图.根据这些为研究不同成熟度区间生成的煤层气成因提供了科学数据, 为"阶段聚气"的煤层气地球化学特征认识及其成因判识提供了科学依据.并且, 将这些研究结果应用到我国沁水盆地南部煤层气研究, 认为该地区煤层气是在中侏罗世以后聚集而成, 具有"阶段聚气"的特征, 证明了热模拟研究成果对自然界煤层气成因的判识具有重要的科学意义.

       

    • 图  1  甲烷(a)、乙烷(b)和二氧化碳(c) 的δ13C值与热解温度的关系

      Fig.  1.  δ13C of CH4 (a), C2H6 (b) and CO2 (c) vs. pyrolysis temperature

      图  2  甲烷(a)和乙烷(b)的δD值与热解温度的关系

      Fig.  2.  δD of CH4 (a) and C2H6 (b) vs. pyrolysis temperature

      图  3  甲烷(a)、乙烷(b)的δ13C与Ro值的关系

      Fig.  3.  δ13C of CH4 (a) and C2H6 (b) vs. Ro

      图  4  甲烷(a)和乙烷(b)的δD与Ro值的关系

      Fig.  4.  δD of CH4 (a) and C2H6 (b) vs. Ro

      图  5  甲烷δD与δ13C值的关系

      Fig.  5.  δD vs. δ13C of CH4

      图  6  甲烷与乙烷δ13C值(a)和甲烷与乙烷δD值(b)相关图

      Fig.  6.  δ13C of CH4 vs. C2H6 (a) and δD of CH4 vs. C2H6 (b)

      表  1  不同Ro区间生成的甲烷、乙烷和二氧化碳平均δ13C与δD值

      Table  1.   Average δ13C and δD of methane, ethane and CO2 generated from peat of different Ro intervals

      样品 Ro(%) δ13CCH4 δDCH4 δ13CCO2 δ13CC2H6 δ13CC3H8 δDC2H6
      250~650 ℃(C3t) 0.8~4.8 -34.7 -223 -20.1 -29.6 -26.7 -203.5
      300~650 ℃(C3t) 1.1~4.8 -33.1 -208 -19.2 -28.5 -24.8 -196.8
      350~650 ℃(C3t) 1.9~4.8 -30.7 -189 -19.0 -24.3 -23.9 -152.3
      400~650 ℃(C3t) 2.3~4.8 -26.4 -167 -14.7 -15.6 -125.0
      450~600 ℃(C3t) 3.1~4.2 -26.4 -167 -17.3
      下载: 导出CSV
    • [1] Behar, F., Vandenbroucke, M., Teermann, S.C., et al., 1995. Experimental Simulation of Gas Generation from Coals and a Marine Kerogen. Chemical Geology, 126: 247-260. doi: 10.1016/0009-2541(95)00121-2
      [2] Clayton, J.L., 1998. Geochemistry of Coalbed Gas—A Review. International Journal of Coal Geology, 35: 159-173. doi: 10.1016/S0166-5162(97)00017-7
      [3] Cramer, B., 2004. Methane Generation from Coal during Open System Pyrolysis Investigate by Isotope Specific. Gaussian Distributed Reaction Kinetics. Organic Geochemistry, 35(2): 379-392. doi: 10.1016/j.orggeochem.2004.01.004
      [4] Chen, J.P., Deng, C.P., Wang, H.T., et al., 2006. Biomarker and Its Implication of Pyrolysis Oils of Macerals from Jurassic Coal Measures. Northwest China. Geochimica, 35(2): 141-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200602004.htm
      [5] Dai, J.X., Qi, H.F., 1989. The Relationship between δ13C and Ro in China's Coal-Formed Gas. Chinese Science Bulletin, 34(9): 690-692 (in Chinese with English abstract). doi: 10.1360/csb1989-34-9-690
      [6] Duan, Y., Zhang, X.L., Sun, T., et al., 2011. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Herbaceous Swamp Peat at Different Thermal Maturity Stages. Chinese Science Bulletin, 56(13): 1383-1389. doi: 10.1007/s11434-011-4356-8
      [7] Duan, Y., Sun, T., Liu, J.F., et al., 2010. Thermal Simulation Experiment and Application of Staged Evolution of Coalbed Methane Carbon Isotope. Acta Sedimentologica Sinica, 28(2): 401-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002025.htm
      [8] Duan, Y., Wu, B.X., Zheng, C.Y., et al., 2005a. Studies on Thermal Simulation of the Formation and Evolution of Coalbed Gas. Chinese Science Bulletin, 50: 40-44. doi:10.1007/BF 0318 4081
      [9] Duan, Y., Wu, B.X., Zheng, C.Y., et al. . 2005b. Studies on Kinetics of Hydrocarbon Generation from Coals in Qinshui Basin. Chinese Science Bulletin, 50(17): 1904-1911. doi: 10.1360/04wd0114
      [10] Kotarba, M.J., Rice, D.D., 2001. Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochem., 16: 895-910. doi: 10.1016/S0883-2927(00)00058-5
      [11] Landais, P., 1991. Assessement of Coal Potential Evolution by Experimental Simulation of Natural Coalification. Organic Geochemistry, 17: 705-710. doi: 10.1016/0146-6380(91)90014-B
      [12] Li, J.S., 1988. The Significance of Lignite Coalification of Pressure and Heat Simulation. Petroleum Geology and Experiment, 10(1): 72-78 (in Chinese with English abstract).
      [13] Liu, D.M., Yang, Q., Tang, D.Z., 1997. Reaction Kinetics of Coalification in Ordos Basin. China. In: Yang, Q., ed., Geology of Fossil Fuel-Coal. The Netherlands, Utrecht, 147-159.
      [14] Liu, Q.Y., Liu, W.H., Dai, J.X., 2007. Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6): 921-934. doi: 10.1016/j.orggeochem.2007.02.002
      [15] Porada, S., 2004. The Reactions of Formation of Selected Gas Products during Coal Pyrolysis. Fuel, 83(9): 1191-1196. doi: 10.1016/j.fuel.2003.11.007
      [16] Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000. Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2): 113-119 (in Chinese with English abstract). http://www.researchgate.net/publication/279583362_Characteristics_and_origins_of_stable_carbon_isotope_in_coal-bed_methane_of_China
      [17] Raymond, M., Landais, P., 1994. Artificial Coalification: Comparison of Confined Pyrolysis and Hydrous Pyrolysis. Fuel, 73(11): 1691-1696. doi: 10.1016/0016-2361(94)90154-6
      [18] Smith, J.W., Pallasser, R.J., 1996. Microbiological Origin of Australian Coalbed Methane. AAPG, 80: 891-897. doi: 10.1016/S0140-6701(97)80133-6
      [19] Stahl, J.W., Carey, B.D., 1975. Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chem. Geol., 16: 257-267. doi: 10.1016/0009-2541(75)90065-0
      [20] Sang, S.X., Liu, H.J., Li, G.Z., et al., 1997. Generation and Enrichment of Coalbed Methane I: Gas Yield in Effective Stage and Concentration of Coalbed Methane. Coal Geology & Exploration, 25(6): 14-17 (in Chinese with English abstract). http://www.researchgate.net/publication/284126414_Generation_and_enrichment_of_coal_bed_methane_I_Gasyield_in_effective_stage_and_concentration_of_coal_bed_methane_in_Chinese
      [21] Zhao, M.J., Song, Y., Su, X.B., et al., 2005. Key Geological Time of Deciding the Geochemical Characteristics of Coalbed Methane. Natural Gas Industry, 25(1): 51-54 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trqgy200501015
      [22] 陈建平, 邓春萍, 王汇彤, 等, 2006. 中国西北侏罗纪煤系显微组分热解油生物标志物特征及其意义. 地球化学, 35(2): 141-150. doi: 10.3321/j.issn:0379-1726.2006.02.004
      [23] 戴金星, 戚厚发, 1989. 我国煤成气的δ13C-Ro关系. 科学通报, 34(9): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198909013.htm
      [24] 段毅, 孙涛, 刘军峰, 等, 2010. 煤层气碳同位素阶段演化的模拟实验研究及其应用. 沉积学报, 28(2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002025.htm
      [25] 李杰生, 1988. 褐煤煤化作用的加压加热模拟实验及其意义. 石油实验地质, 10(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198801008.htm
      [26] 秦勇, 唐修义, 叶建平, 等, 2000. 中国煤层甲烷稳定碳同位素分布与成因探讨. 中国矿业大学学报, 29 (2): 113-119. doi: 10.3321/j.issn:1000-1964.2000.02.001
      [27] 桑树勋, 刘焕杰, 李贵中, 等, 1997. 煤层气生成与煤层气富集I: 有效阶段生气量与煤层气富集. 煤田地质与勘探, 25(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT706.003.htm
      [28] 赵孟军, 宋岩, 苏现波, 等, 2005. 决定煤层气地球化学特征的关键地质时期. 天然气工业, 25(1): 51-54. doi: 10.3321/j.issn:1000-0976.2005.01.015
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  2939
    • HTML全文浏览量:  99
    • PDF下载量:  454
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-09-28
    • 刊出日期:  2013-01-15

    目录

      /

      返回文章
      返回