Quantitative Evaluation of Paleoproductivity of Diatom Mats from Tropical West Pacific during the Last Glacial Maximum (LGM)
-
摘要: 巨型"树荫种"硅藻在成层化大洋中通过"秋季倾泻"勃发模式向深部大洋输出的有机碳通量等于甚至超过"春季勃发"硅藻, 其在第四纪全球气候转型、大洋碳储库演变中的重要地位最近才予以重视.作为大洋碳循环系统的重要参数, 生产力无疑成为探索这一作用的有效窗口.以东菲律宾海的Ethmodiscus rex硅藻席(LDM, laminated diatom mats)岩心WPD-03为材料, 以opal、TOC、bio-Ba等生源组分数据为基础, 运用前人建立的各种生产力经验公式, 试图估算LGM(last glacial maximum)热带西太平洋LDM的古生产力状况.结果显示, LDM沉积期初级生产力、有机碳雨率和埋藏生产力估算合理, 平均分别为248.42 g·m-2·a-1、61.93 g·m-2·a-1和5.27 g·m-2·a-1.估计的初级生产力与代表高生产力的世界大洋各上涌海区可比, 纠正了成层化大洋生产力低下的传统观点, 支持巨型"树荫种"硅藻对大洋有机碳生产与输出的充分贡献.然而, 估算的输出生产力明显不合理, 表明利用基于真光层建立的生产力模型评估次表层水中的巨型"树荫种"硅藻时应格外谨慎, 加强了区别对待"深部"生产力和"表层"生产力的重要性.LGM热带西太平洋LDM的高生产力状况与风尘硅输入的E. rex勃发条件以及还原的沉积环境相一致.Abstract: The organic carbon flux to deep ocean, dominated by the bloom of giant "shade flora" diatoms via "fall dump" in stratified ocean, could rival or even exceed that of "spring bloom" diatoms. The giant "shade flora" diatoms played a significant role in the global climate transition and ocean carbon reservoir change in the Quaternary, which could be exploited by the paleoproductivity, one of most important factors in the ocean carbon cycle systems. We tried to estimate the paleoproductivity of laminated Ethmodiscus rex diatom mats (LDM) from tropical West Pacific during the Last Glacial Maximum (LGM), based on the data of opal, total organic carbon and biogenic barium from Core WPD-03 located in the eastern Philippine Sea. Primary productivity, organic carbon rain rates, burial productivity during the LDM deposition were estimated to average 248.42 g·m-2·a-1, 61.93 g·m-2·a-1 and 5.27 g·m-2·a-1, respectively, of which the primary productivity is comparable to those of some modern continent-margin upwelling zones, correcting low primary productivity with a largely stratified ocean and supporting substantial contribution of giant "shade flora" diatoms to the production and export of organic carbon in the world ocean. However, the unreasonable estimations for the export productivity by the empirical formulas in base of photic zone suggest that a caution must be taken to assess the "deep" productivity represented by giant "shade flora" diatoms, which should be distinguishable from classic "surface" productivity characterized by common diatoms. The high levels of productivity of LDM were consistent with the blooming conditions of dust silicon inputs and reducing depositional environments.
-
Key words:
- paleoproductivity /
- subsurface water /
- diatom mats /
- tropical West Pacific /
- last glacial maximum /
- marine geology
-
图 4 东菲律宾海硅藻席高生产力状况与“树荫种”硅藻Ethmodiscus rex的勃发条件、氧化还原沉积环境的链接
图中PP、RROC和PB分别代表初级生产力、有机碳雨率和埋藏生产力,单位都为g·m-2·a-1.OM、opal代表有机质和生源蛋白石.Thermohaline stratification为温盐成层化;Bottom waters为底层水;Suboxic为亚氧化条件;Sulfidic anoxic为硫化缺氧条件
Fig. 4. Mode linking high levels of productivity of laminated diatom mats to blooming conditions of "shade flora" diatoms Ethmodiscus rex and depositional redox environments
表 1 WPD-03孔硅藻席中相邻年代控制点之间opal、TOC、Ba和Ti的平均含量
Table 1. Average contents of opal, TOC, Ba and Ti between adjacent date controlling points in laminated diatom mats of core WPD-03
层位(cm) 水深*(m) opal(%) TOC(%) Si/C(摩尔比) Ba(%) Ti(%) 42.5~72.5 5 250.6 60.4 0.230 46.86 0.038 0.105 72.5~102.5 5 250.9 60.1 0.247 43.41 0.043 0.091 102.5~137.5 5 251.2 62.1 0.247 44.84 0.041 0.090 137.5~172.5 5 251.6 61.5 0.244 45.08 0.047 0.109 172.5~286.0 5 252.3 52.1 0.222 41.83 0.071 0.159 平均值 5 251.3 59.2 0.238 44.40 0.048 0.111 注:*水深为WPD-03孔硅藻席中某处沉积物的瞬时水深,即为某处沉积物在岩心中的深度与现代水深之和,是用来计算下文中的输出生产力的,代表公式(13)中的水深Z. 表 2 WPD-03孔硅藻席中的沉积速率、埋藏生产力与初级生产力
Table 2. Linear sedimentation rates, burial productivity and primary productivity in laminated diatom mats of core WPD-03
层位(cm) 沉积速率(cm/ka) 初级生产的TOC(%) 质量堆积速率(g·m-2·a-1) 埋藏生产力(g·m-2·a-1) opal质量堆积速率(g·m-2·a-1) 初级生产力(g·m-2·a-1) 42.5~72.5 50.0 11.36 1 168.68 2.69 706.34 132.70 72.5~102.5 13.6 11.29 318.18 0.79 191.64 36.00 102.5~137.5 350.0 11.66 8 146.75 20.12 5 055.84 949.87 137.5~172.5 13.5 11.56 314.67 0.76 193.01 36.26 172.5~286.0 37.3 9.80 890.41 1.98 464.57 87.28 平均值 92.9 11.13 2 167.74 5.27 1 322.28 248.42 表 3 WPD-03孔硅藻席中的有机碳雨率与输出生产力
Table 3. Organic carbon rain rates and export productivity in laminated diatom mats of core WPD-03
层位(cm) bio-Ba(%) bio-Ba质量堆积速率(g·m-2·a-1) 有机碳雨率(g·m-2·a-1) 输出生产力( Sarnthein et al., 1988 )(g·m-2·a-1)输出生产力( François et al., 1995 )(g·m-2·a-1)42.5~72.5 0.026 0.30 34.59 2 743.55 3.08 72.5~102.5 0.033 0.11 26.12 1 798.16 2.07 102.5~137.5 0.031 2.53 160.11 27 498.38 26.74 137.5~172.5 0.035 0.11 27.56 1 948.90 2.24 172.5~286.0 0.054 0.48 61.27 6 483.77 6.90 平均值 0.036 0.71 61.93 8 094.55 8.21 -
[1] Brumsack, H.J., 1989. Geochemistry of Recent TOC-Rich Sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78: 851-882. doi: 10.1007/BF01829327 [2] Brunelle, B.G., Sigman, D.M., Cook, M.S., et al., 2007. Evidence from Diatom-bond Nitrogen Isotopes for Subarctic Pacific Stratification during the Last Ice Age and A Link to North Pacific Denitrification Changes. Paleoceanography, 22: PA1215. doi: 10.1029/2005PA001205 [3] Calvert, S.E., Price, N.B., 1983. Geochemistry of Namibian Shelf Sediments. In: Suess, E., Thiede, J., eds., Coastal Upwelling—Its Sediment Record, Part A: Response of the Sedimentary Regime to Present Coastal Upwelling, Volume 10. Plenum Press, New York, 337-375. [4] De Deckker, P., Gingele, F.X., 2002. On The Occurrence of the Giant Diatom Ethmodiscus Rex in An 80 ka Record from a Deep-Sea Core, Southeast of Sumatra, Indonesia: Implications for Tropical Oceanography. Marine Geology, 183: 31-43. doi: 10.1016/S0025-3227(01)00252-3 [5] Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7: 163-181. doi: 10.1029/92PA00181 [6] François, R., Honjo, S., Manganini, S.J., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstruction. Global Biogeochemical Cycles, 9: 289-303. doi: 10.1029/95GB00021 [7] Gingele, F.X., Schmieder, F., 2001. Anomalous South Atlantic Lithologies Confirm Global Scales of Unusual Mid Pleistocene Climate Excursion. Earth and Planetary Science Letter, 186: 93-101. doi: 10.1016/S0012-821X(01)00234-5 [8] Kemp, A.E.S., Pearce, R.B., Grigorov, I., et al., 2006. Production of Giant Marine Diatoms and Their Export at Oceanic Frontal Zones: Implications for Si and C Flux From Stratified Oceans. Global Biogeochemical Cycles, 20: GB4S04. doi: 10.1029/2006GB002698 [9] Kemp, A.E.S., Pike, J., Pearce, R.B., et al., 2000. The "Fall Dump" —A New Perspective on the Role of A "Shade Flora" in The Annual Cycle of Diatom Production and Exportation. Deep-Sea Research II, 47: 2129-2154. doi: 10.1016/S0967-0645(00)00019-9 [10] Müller, P.J., Suess, E., 1979. Productivity, Sedimentation-Rate, and Sedimentary Organic-Matter in the Oceans 1: Organic-Carbon Preservation. Deep Sea Research I, 26(12): 1347-1362. doi: 10.1016/0198-0149(79)90003-7 [11] Paytan, A., Griffith, E.M., 2007. Marine Barite: Recorder of Variations in Ocean Export Productivity. Deep Sea Research II, 54: 687-705. doi: 10.1016/j.dsr2.2007.01.007 [12] Ragueneau, O., Treguer, P., Leynaert, A., et al., 2000. A Review of the Si Cycle in the Modern Ocean: Recent Progress and Missing Gaps in the Application of Biogenic Opal as a Paleoproductivity Proxy. Global and Planetary Change, 26: 317-365. doi: 10.1016/S0921-8181(00)00052-7 [13] Romero, O., Schmieder, F., 2006. Occurrence of Thick Ethmodiscus Oozes Associated with a Terminal Mid-Pleistocene Transition Event in the Oligotrophic Subtropical South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 235: 321-329. doi: 10.1016/j.palaeo.2005.10.026 [14] Sarnthein, M., Winn, K., Duplessy, J.C., et al., 1988. Global Variations of Surface Ocean Productivity in Low and Mid-Latitudes: Influence on CO2 Reservoirs of the Deep Ocean and Atmosphere during the Last 21000 Years. Paleoceanography, 3(3): 361-399. doi: 10.1029/PA003i003p00361 [15] Schmieder, F., Von Dobeneck, T., Bleil, U., 2000. The Mid-Pleistocene Climate Transition as Documented in the Deep South Atlantic Ocean: Initiation, Interim State and Terminal Event. Earth and Planetary Science Letter, 179: 539-549. doi: 10.1016/S0012-821X(00)00143-6 [16] Smetacek, V.S., 2000. The Giant Diatom Dump. Nature, 406: 574-575. doi: 10.1038/35020665 [17] Taylor, S.R., McClennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [18] Villareal, T.A., 1992. Buoyancy Properties of the Giant Diatom Ethmodiscus. Journal of Plankton Research, 14(3): 459-463. doi: 10.1093/plankt/14.3.459 [19] Villareal, T.A., Altabet, M.A., Culver-Rymsza, K., 1993. Nitrogen Transport by Vertically Migrating Diatom Mats in the North Pacific Ocean. Nature, 363: 709-712. doi: 10.1038/363709a0 [20] Villareal, T.A., Carpenter, E.J., 1994. Chemical Composition and Photosynthetic Characteristics of Ethmodiscus Rex (Bacillariophyceae): Evidence for Vertical Migration. Journal of Phycology, 30: 1-8. doi: 10.1111/j.0022-3646.1994.00001.x [21] Villareal, T.A., Joseph, L., Brzezinski, M.A., et al., 1999a. Biological and Chemical Characteristics of the Giant Diatom Ethmodiscus (Bacillariophyceae) in the Central North Pacific Gyre. Journal of Phycology, 35: 896-902. doi: 10.1046/j.1529-8817.1999.3550896.x [22] Villareal, T.A., Pilskaln, C., Brzezinski, M., 1999b. Upward Transport of Oceanic Nitrate by Migrating Diatom Mats. Nature, 397: 423-425. doi: 10.1038/17103 [23] Wang, P.X., Jian, Z.M., Liu, Z.F., 2006. Interactions between the Earth Spheres: Deep-Sea Processes and Record (II) Tropical Forcing of Climate Changes and Carbon Cycling. Advances in Earth Science, 21(4): 338-345 (in Chinese with English abstract). doi: 10.1029/2005JG000084/full [24] Xiong, Z.F., Li, T.G., Zhai, B., et al., 2010a. Clay Mineral Characteristics of Ethmodiscus Rex Diatom Mats from Low-Latitude Western Pacific during the Last Glacial and Implications for Their Formation. Earth Science—Journal of China University of Geosciences, 35(4): 551-562 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.071 [25] Xiong, Z.F., Lu, B., Yu, X.K., et al., 2010b. Determination of Biogenic Opal in Marine Sediments by Inductively Coupled Plasma—Atomic Emission Spectrometry with Wet Alkaline Digestion. Rock and Mineral Analysis, 29(1): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201001004.htm [26] Xiong, Z.F., Li, T.G., Algeo, T., et al., 2012. Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044 [27] Xu, Z.K., Li, A.C., Jiang, F.Q., et al., 2008. Geochemical Character and Material Source of Sediments in the Eastern Philippine Sea. Chinese Science Bulletin, 53(6): 923-931. http://www.springerlink.com/content/tqv7684h06774ur2/ [28] Zhai, B., Li, T.G., Chang, F.M., et al., 2009. Vast Laminated Diatom Mat Deposits from the West Low-Latitude Pacific Ocean in the Last Glacial Period. Chinese Science Bulletin, 54: 4529-4533. [29] Zheng, Y., Anderson, R.F., Froelich, N.P., et al., 2002. Challenges in Radiocarbon Dating Organic Carbon in Opal-Rich Marine Sediments. Radiocarbon, 44(1): 123-136. doi: 10.1017/S0033822200064729 [30] 汪品先, 翦知湣, 刘志飞, 2006. 地球圈层相互作用中的深海过程和深海记录(II): 气候变化的热带驱动与碳循环. 地球科学进展, 21(4): 338-345. doi: 10.3321/j.issn:1001-8166.2006.04.002 [31] 熊志方, 李铁刚, 翟滨, 等, 2010a. 低纬度西太平洋末次冰期Ethmodiscus rex硅藻席粘土矿物特征及形成机制的启示. 地球科学——中国地质大学学报, 35(4): 551-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004009.htm [32] 熊志方, 路波, 于心科, 等, 2010b. 湿碱消解-等离子体发射法测定海洋沉积物中的生物硅. 岩矿测试, 29(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201001004.htm