Geochemistry and Geochronology of Shangyupo Biotite Schist in the Zhongtiaoshan Mountains: Implications for Its Petrogenesis
-
摘要: 中条山上玉坡背斜核部主要有北峪花岗岩、变富钾流纹岩及(角闪石/方柱石)黑云母片岩为主的变镁铁质杂岩出露.上玉坡的黑云母片岩类的归属及成因争论已久.空间上, 上玉坡黑云母片岩类岩石及地球化学特征形成了一个以背斜核部为中心的环形的递变带, 岩石的主要造岩矿物特征及K、Ca、Na、Rr、Sr、Ba受退变质韧性剪切带高盐度流体改造均发生系统变化, Ta及LREE也显示有明显变化.上玉坡变富钾流纹岩LA-MC-ICPMS测年获得207Pb/206Pb加权平均年龄为2 164±8.9 Ma, 与绛县群竖井沟组富钾流纹岩(207Pb/206Pb加权平均年龄2 161.3±1.5 Ma)同时代产出.上玉坡产出的变富钾流纹岩-黑云母片岩与铜矿峪分布的绛县群双峰式火山建造岩性组合类似, 推断上玉坡背斜核部产出的黑云母片岩产出于2.20~2.15 Ga.使用在流体中保持相对稳定的高场强元素对图解, 判断中条山黑云母片岩的原岩更可能为亚碱性镁铁质火成岩, 并非前人认识的"超钾基性火山岩", 综合中条山古元古代地质特征, 该地区古元古代可能处于与俯冲活动有关的张性构造环境.
-
关键词:
- 中条山 /
- 黑云母片岩 /
- 岩石地球化学 /
- 流体 /
- LA-MC-ICPMS锆石U-Pb年龄
Abstract: The primary compositions of the anticline core at Shangyupo are Beiyu meta-granitoid, meta-rhyolite and meta-mafic rocks. The age and petrogenesis of the biotite schist have been under debate for a very long time. The petrology features and geochemistry of Shangyupo amphibole/scapolite biotite schist are cricoid gradually distributed from the anticlinal core to its edge. The K, Ca, Na, Rr, Sr and Ba have been changed systematically by the high salinity fluid from the ductile shear belts, and Ta and LREE are also shown to have been dramatically changed in this event. LA-MC-ICPMS zircon U-Pb dating for the Shangyupo meta-rhyolite and the meta-ryholite of Jiangxian group yield the weighted mean 207Pb/206Pb age of 2 160.5±7.8 Ma and 2 161.3±1.5 Ma respectively. The Shangyupo meta-ryhorite and biotite schist may have been formed during the Jiangxian volcano event between 2.20~2.15 Ga, based on the chronology and comparison to related rocks. The HFSE pairs show that the biotite schist is a subalkaline mafic rocks instead of the alkaline mafic rocks as previously suggested. The Jiangxian event may represent a tensional event related to the subduction, based on the comprehensive geological information of Zhongtiaoshan area.-
Key words:
- Zhongtiaoshan Mountains /
- biotite schist /
- lithogeochemistry /
- fluid /
- LA-MC-ICPMS zircon U-Pb dating
-
图 8 上玉坡背斜核部(角闪石)黑云母片岩微量元素空间变化
样品空间位置与图 7一致
Fig. 8. Modification of some trace elements of amphibole biotite schist and biotite schist in the Shangyupo anticlinal core
表 1 上玉坡变富钾流纹岩(TMG-8)及绛县群竖井沟组变富钾流纹岩(TKY-PM-B7)LA-MC-ICPMS锆石U-Pb同位素测年结果
Table 1. Analyzed LA-MC-ICPMS zircon U-Pb isotopic results of Shangyupo meta-rhyolite (TMG-8) and Jiangxian group meta-rhyolite (TKY-PM-B7)
序号 点位
w(Th)
(10-6)
w(U)
(10-6)Th/U 同位素比值 同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TMG-8 1 TMG-8-1 26.2 28.1 0.93 0.136 14 0.000 94 7.255 23 0.084 43 0.386 27 0.003 59 2 188.9 12.0 2 143.3 10.4 2 105.5 16.7 2 TMG-8-2 22.1 27.5 0.80 0.134 64 0.000 98 7.391 39 0.096 21 0.398 25 0.004 50 2 161.1 12.7 2 159.9 11.6 2 161.0 20.8 3 TMG-8-3 32.7 35.9 0.91 0.135 30 0.000 73 7.209 39 0.071 24 0.386 41 0.003 28 2 168.5 9.6 2 137.7 8.8 2 106.2 15.2 4 TMG-8-5 27.4 30.9 0.88 0.135 76 0.000 67 7.357 41 0.080 77 0.393 14 0.004 00 2 173.8 9.1 2 155.8 9.8 2 137.4 18.5 5 TMG-8-6 20.9 23.4 0.89 0.135 85 0.002 88 7.173 76 0.127 21 0.389 55 0.006 00 2 175.9 37.0 2 133.2 15.8 2 120.8 27.8 6 TMG-8-8 20.3 26.9 0.75 0.135 47 0.002 19 7.245 07 0.161 30 0.381 48 0.008 48 2 170.1 27.6 2 142.1 19.9 2 083.2 39.6 7 TMG-8-9 40.0 55.2 0.72 0.135 21 0.002 00 6.892 77 0.070 83 0.375 19 0.003 75 2 168.5 25.9 2 097.7 9.1 2 053.8 17.6 8 TMG-8-11 19.8 22.4 0.88 0.135 45 0.002 13 6.695 78 0.100 83 0.365 67 0.005 53 2 170.1 27.9 2 072.1 13.3 2 009.0 26.1 9 TMG-8-12 29.1 30.8 0.94 0.134 94 0.000 99 7.158 39 0.179 55 0.384 32 0.008 22 2 164.8 12.7 2 131.3 22.4 2 096.4 38.3 10 TMG-8-13 17.8 23.0 0.77 0.132 80 0.000 86 7.096 55 0.116 21 0.388 00 0.006 20 2 135.5 11.4 2 123.6 14.6 2 113.5 28.8 11 TMG-8-14 10.3 17.4 0.59 0.135 04 0.002 92 6.803 75 0.117 54 0.368 00 0.007 21 2 164.5 36.9 2 086.2 15.3 2 020.0 34.0 12 TMG-8-15 27.2 33.0 0.82 0.134 02 0.000 72 7.003 15 0.181 04 0.381 41 0.008 95 2 151.5 9.1 2 111.8 23.0 2 082.9 41.8 13 TMG-8-16 239.4 30.2 7.93 0.135 21 0.001 57 7.081 49 0.093 31 0.383 47 0.005 12 2 168.5 20.1 2 121.7 11.7 2 092.5 23.9 TKY-PM-B7 1 TKY-PM-B7-1 25.5 38.2 0.67 0.134 66 0.000 76 7.232 64 0.142 01 0.389 28 0.007 23 2161.1 9.9 2 140.5 17.5 2 119.5 33.6 2 TKY-PM-B7-2 35.3 61.7 0.57 0.135 00 0.000 38 7.188 17 0.062 19 0.386 41 0.003 42 2 164.8 4.9 2 135.0 7.7 2 106.2 15.9 3 TKY-PM-B7-3 30.9 54.9 0.56 0.134 91 0.000 41 7.263 94 0.076 16 0.390 51 0.003 98 2 162.7 5.2 2 144.4 9.4 2 125.2 18.5 4 TKY-PM-B7-5 51.3 75.8 0.68 0.134 69 0.000 37 7.103 21 0.074 21 0.382 65 0.004 01 2 161.1 4.9 2 124.4 9.3 2 088.6 18.7 5 TKY-PM-B7-6 58.4 89.5 0.65 0.134 41 0.000 35 7.311 83 0.075 75 0.394 78 0.004 19 2 166.7 4.6 2 150.3 9.3 2 144.9 19.4 6 TKY-PM-B7-7 8.6 12.4 0.70 0.135 34 0.000 75 7.159 85 0.113 85 0.383 78 0.005 89 2 168.2 15.0 2 131.5 14.2 2 093.9 27.4 7 TKY-PM-B7-8 87.3 115.3 0.76 0.134 27 0.000 37 7.367 23 0.081 03 0.398 25 0.004 53 2 154.6 5.7 2 157.0 9.8 2 161.0 20.9 8 TKY-PM-B7-9 46.0 71.2 0.65 0.134 58 0.000 44 7.145 38 0.086 18 0.385 00 0.004 48 2 158.3 5.4 2 129.7 10.7 2 099.6 20.9 9 TKY-PM-B7-10 45.9 72.6 0.63 0.134 71 0.000 47 6.976 43 0.082 37 0.375 89 0.004 54 2 161.1 6.2 2 108.4 10.5 2 057.1 21.2 10 TKY-PM-B7-11 44.0 60.0 0.73 0.135 32 0.000 52 7.275 95 0.085 32 0.390 13 0.004 52 2 168.2 7.3 2 145.9 10.5 2 123.4 21.0 11 TKY-PM-B7-12 66.9 86.4 0.77 0.134 63 0.000 58 7.274 48 0.121 07 0.392 07 0.006 57 2 161.1 8.5 2 145.7 14.9 2 132.4 30.4 12 TKY-PM-B7-13 41.4 65.5 0.63 0.133 90 0.000 56 7.409 77 0.077 13 0.401 38 0.003 96 2 149.7 7.4 2 162.2 9.3 2 175.4 18.2 13 TKY-PM-B7-14 31.8 51.1 0.62 0.134 22 0.000 48 7.285 46 0.048 46 0.393 93 0.002 63 2 154.0 6.6 2 147.0 5.9 2 141.0 12.2 14 TKY-PM-B7-15 20.9 44.1 0.47 0.134 75 0.000 45 7.217 30 0.053 18 0.388 41 0.002 52 2 160.8 5.6 2 138.6 6.6 2 115.5 11.7 15 TKY-PM-B7-16 93.4 135.4 0.69 0.134 60 0.000 43 7.300 18 0.051 21 0.393 48 0.002 68 2 159.0 5.6 2 148.8 6.3 2 139.0 12.4 16 TKY-PM-B7-17 44.4 71.1 0.62 0.134 90 0.000 39 7.279 71 0.044 77 0.391 48 0.002 18 2 162.7 5.4 2 146.3 5.5 2 129.7 10.1 17 TKY-PM-B7-18 76.1 119.2 0.64 0.134 31 0.000 44 7.451 00 0.067 53 0.402 45 0.003 46 2 155.2 5.4 2 167.1 8.1 2 180.3 15.9 18 TKY-PM-B7-19 42.1 53.1 0.79 0.134 79 0.000 42 7.218 16 0.054 84 0.388 51 0.002 69 2 161.4 0.9 2 138.7 6.8 2 115.9 12.5 19 TKY-PM-B7-20 48.7 70.5 0.69 0.134 35 0.000 46 7.240 33 0.042 05 0.391 18 0.002 10 2 166.7 5.9 2 141.5 5.2 2 128.3 9.7 表 2 上玉坡黑云母片岩全岩主量元素(%)、微量元素(μg/ g)含量
Table 2. Major (%) and trace element (μg/ g) data of Shangyupo biotite schist
样品* TMG-P1-B31 TMG-9 TMG-21 TMG-P2-B21 TMG-19 TMG-P2-B31 BZG-HY3 BZG-HY1 BZG-HY4 BZG-HY2 HJY-SM-JK1 HJY-SM-JK3 岩性 黑云母片岩 黑云母片岩 角闪石黑云母片岩 角闪石黑云母片岩 角闪石黑云母片岩 角闪石黑云母片岩 黑云母片岩 黑云母片岩 黑云母片岩 黑云母片岩 黑云母片岩 方柱石黑云母片岩 SiO2 41.86 48.02 46.90 46.20 47.78 45.22 49.85 44.98 42.27 40.47 40.04 51.14 TiO2 1.21 1.10 1.17 1.40 1.38 1.39 1.00 1.06 1.36 1.10 0.94 2.16 Al2O3 16.51 15.76 14.03 13.98 13.92 14.68 14.56 16.41 16.91 17.73 17.72 15.69 Fe2O3 5.90 7.24 4.74 8.85 3.96 1.75 7.61 7.73 1.50 9.80 10.26 11.59 FeO 7.37 6.30 7.69 8.10 6.26 7.06 6.84 6.95 1.35 8.82 9.23 11.59 MnO 0.24 0.24 0.21 0.43 0.30 0.37 0.14 0.16 0.13 0.09 0.08 0.18 MgO 12.26 7.18 9.36 6.49 7.07 10.44 11.10 9.60 11.28 14.28 14.89 6.41 CaO 0.79 0.83 7.45 5.59 4.44 7.07 3.45 4.75 2.66 0.74 0.69 2.58 Na2O 2.39 2.58 3.62 3.44 5.13 3.86 3.31 3.15 2.03 1.32 0.99 2.62 K2O 9.52 8.77 2.66 4.00 5.84 6.07 4.10 4.70 6.82 8.42 8.69 2.89 P2O5 0.12 0.12 0.23 0.27 0.13 0.14 0.16 0.15 0.15 0.12 0.15 0.51 LOI 1.67 1.68 1.57 1.05 3.61 1.74 1.73 1.70 1.37 1.73 1.80 1.17 Total 99.84 99.82 99.63 99.80 99.81 99.79 103.85 101.33 87.82 104.62 105.48 108.53 Sr 20.11 15.73 67.18 146.20 91.96 133.20 62.76 53.71 28.29 89.75 23.71 37.67 Rb 203.20 208.30 63.07 57.71 187.30 107.90 118.27 215.13 184.10 141.06 199.02 80.12 Ba 352.90 461.30 230.40 634.30 264.30 291.10 255.25 534.25 448.07 336.69 427.51 270.00 Th 0.70 1.00 0.82 0.79 2.10 0.28 0.48 0.89 1.25 0.48 0.86 6.22 Ta 0.78 0.59 0.34 0.40 0.76 0.58 0.19 0.40 0.20 0.23 0.18 0.68 Nb 3.36 2.36 3.18 3.16 5.05 2.41 2.39 3.62 3.25 2.45 1.88 8.40 Zr 75.88 46.14 72.32 66.06 104.80 45.58 44.47 73.53 52.42 51.74 44.27 91.69 Hf 2.74 1.45 2.16 1.94 2.98 1.53 1.21 1.98 1.50 1.47 1.23 1.83 Y 4.01 8.56 16.62 26.44 17.67 19.88 14.43 8.90 21.41 11.11 14.59 19.39 Sc 27.85 22.43 13.59 28.70 32.51 35.83 37.68 30.08 38.43 30.92 37.76 37.67 V 254.10 276.90 271.90 282.10 264.60 300.60 263.53 284.99 269.61 247.95 284.23 297.70 Cr 358.50 291.00 144.20 102.50 162.80 883.50 452.99 248.38 335.44 251.48 301.79 22.26 Co 58.05 63.93 67.15 92.95 62.56 67.72 50.69 54.10 59.33 47.48 61.82 31.83 Ni 228.60 217.80 149.20 96.22 164.40 340.30 186.89 194.74 143.76 194.10 151.85 28.74 Cu 2.38 7.19 13.62 13.62 645.70 17.69 13.03 11.64 20.09 9.06 7.01 7.11 Pb 0.92 1.03 2.09 1.49 2.99 0.72 1.27 2.92 1.20 2.02 3.03 1.97 U 0.68 0.08 0.12 0.14 0.29 0.16 0.18 1.62 0.60 0.67 0.42 0.73 La 0.38 2.48 5.04 10.27 12.17 3.52 4.77 18.01 34.24 8.96 22.13 26.37 Ce 0.58 5.22 11.70 21.35 27.10 8.61 11.07 36.21 73.68 18.96 48.63 61.51 Pr 0.14 0.95 1.91 3.00 3.52 1.30 1.52 4.27 9.24 2.41 6.19 6.94 Nd 0.78 4.85 10.23 13.43 15.61 6.48 7.41 17.82 41.77 10.96 27.57 29.06 Sm 0.34 1.41 2.74 3.47 3.35 1.98 1.70 3.42 7.91 2.38 5.49 6.40 Eu 0.18 0.57 1.46 1.66 1.05 1.04 0.78 1.03 2.12 0.94 1.39 1.64 Gd 0.59 1.84 2.96 4.69 3.80 2.71 2.20 3.49 7.35 2.62 5.21 6.26 Tb 0.12 0.34 0.49 0.81 0.62 0.52 0.39 0.45 0.98 0.37 0.72 0.91 Dy 0.78 1.89 3.08 4.83 3.65 3.49 2.66 2.13 5.06 2.16 3.54 4.85 Ho 0.17 0.41 0.76 0.98 0.79 0.74 0.53 0.36 0.88 0.41 0.60 0.82 Er 0.56 1.02 2.45 2.85 2.17 2.27 1.61 0.89 2.47 1.19 1.64 1.87 Tm 0.09 0.18 0.44 0.41 0.34 0.34 0.23 0.12 0.31 0.17 0.21 0.27 Yb 0.73 0.94 3.00 2.59 2.04 2.15 1.49 0.79 1.89 1.02 1.29 1.76 Lu 0.14 0.16 0.48 0.38 0.32 0.33 0.21 0.14 0.29 0.18 0.19 0.23 Zr/TiO2 62.71 42.13 62.02 47.19 76.12 32.79 44.29 69.17 38.43 47.08 46.94 42.45 Nb/Y 0.84 0.28 0.19 0.12 0.29 0.12 0.17 0.41 0.15 0.22 0.13 0.43 ΣREE 5.58 22.26 46.74 70.71 76.55 35.47 36.58 89.11 188.17 52.72 124.80 148.89 LREE/HREE 0.75 2.28 2.42 3.03 4.57 1.83 2.92 9.66 8.78 5.50 8.30 7.77 (La/Yb)N 0.38 1.89 1.20 2.84 4.28 1.18 2.30 16.40 12.97 6.32 12.29 10.75 δEu 1.20 1.08 1.56 1.26 0.90 1.36 1.23 0.90 0.83 1.14 0.78 0.78 δCe 0.61 0.83 0.92 0.93 1.00 0.99 1.00 0.98 1.00 0.98 1.00 1.09 *样品顺序按图 7剖面图自西向东排列. -
[1] Cervantes, P., Wallace, P.J., 2003. Role of H2O in Subduction-Zone Magmatism: New Insights from Melt Inclusions in High-Mg Basalts from Central Mexico. Geology, 31(3): 235-238. doi: 10.1130/0091-7613(2003)031<0235:rohois>2.0.co;2 [2] Chakrabarti, R., Basu, A.R., Santo, A.P., et al., 2009. Isotopic and Geochemical Evidence for a Heterogeneous Mantle Plume Origin of the Virunga Volcanics, Western Rift, East African Rift System. Chemical Geology, 259(3-4): 273-289. doi: 10.1016/j.chemgeo.2008.11.010 [3] Co-editted, 1978. Geology of Copper Deposits in Zhongtiaoshan Mountains. Geological Publishing House, Beijing (in Chinese). [4] Frietsch, R., Tuisku, P., Martinsson, O., et al., 1997. Early Proterozoic Cu-(Au) and Fe Ore Deposits Associated with Regional Na-Cl Metasomatism in Northern Fennoscandia. Ore Geology Reviews, 12(1): 1-34. doi: 10.1016/S0169-1368(96)00013-3 [5] Fu, Z.R., Li, D.W., Li, X.F., et al., 1992. Structural Analysis on Ore-Controlling of Metamorphic Core Complexes and Denudational Faults. China University of Geosciences Press, Wuhan (in Chinese). [6] Furman, T., 2007. Geochemistry of East African Rift Basalts: An Overview. Journal of African Earth Sciences, 48(2-3): 147-160. doi: 10.1016/j.jafrearsci.2006.06.009 [7] Glassley, W.E., Korstgård, J.A., Sørensen, K., 2010. K-Rich Brine and Chemical Modification of the Crust during Continent-Continent Collision, Nagssugtoqidian Orogen, West Greenland. Precambrian Research, 180(1-2): 47-62. doi: 10.1016/j.precamres.2010.02.020 [8] Grenne, T., Slack, J.F., 2005. Geochemistry of Jasper Beds from the Ordovician Løkken Ophiolite, Norway: Origin of Proximal and Distal Siliceous Exhalites. Economic Geology, 100(8): 1511-1527. doi: 10.2113/gsecongeo.100.8.1511 [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [10] Hubbard, M.S., 1996. Ductile Shear as A Cause of Inverted Metamorphism: Example from the Nepal Himalaya. Journal of Geology, 104(4): 493-499. doi: 10.1086/629842 [11] Hunt, J., Baker, T., Thorkelson, D., 2005. Regional-Scale Proterozoic IOCG-Mineralized Breccia Systems: Examples from the Wernecke Mountains, Yukon, Canada. Mineralium Deposita, 40(5): 492-514. doi: 10.1007/s00126-005-0019-5 [12] Kullerud, K., 1999. Cl-Scapolite, Cl-Amphibole, and Plagioclase Equilibria in Ductile Shear Zones at Nusfjord, Lofoten, Norway: Implications for Fluid Compositional Evolution during Fluid-Mineral Interaction in the Deep Crust. Geochimica et Cosmochimica Acta, 63(22): 3829-3844. doi: 10.1016/S0016-7037(99)00150-7 [13] Kusky, T.M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. doi: 10.1016/j.gr.2011.01.004 [14] Lentz, D.R., 1999. Petrology, Geochemistry, and Oxygen Isotope Interpretation of Felsic Volcanic and Related Rocks Hosting the Brunswick 6 and 12 Massive Sulfide Deposits (Brunswick Belt), Bathurst Mining Camp, New Brunswick, Canada. Economic Geology, 94(1): 57-86. doi: 10.2113/gsecongeo.94.1.57 [15] Liu, Y.S., Hu Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [16] Lottermoser, B.G., 1989. Rare Earth Element Study of Exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineralium Deposita, 24(2): 92-99. doi: 10.1007/BF00206309 [17] Manning, C.E., 2004. The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223(1-2): 1-16. doi: 10.1016/j.epsl.2004.04.030 [18] Marocchi, M., Hermann, J., Tropper, P., et al., 2010. Amphibole and Phlogopite in "Hybrid" Metasomatic Bands Monitor Trace Element Transfer at the Interface Between Felsic and Ultramafic Rocks (Eastern Alps, Italy). Lithos, 117(1-4): 135-148. doi: 10.1016/j.lithos.2010.02.011 [19] Moore, J.M., 2010. Comparative Study of the Onganja Copper Mine, Namibia: A Link Between Neoproterozoic Mesothermal Cu(-Au) Mineralization in Namibia and Zambia. South African Journal of Geology, 113(4): 445-460. doi: 10.2113/gssajg.113.4.445 [20] Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257-A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x [21] Oliver, N.H.S., Rawling, T.J., Cartwright, I., et al., 1994. High-Temperature Fluid-Rock Interaction and Scapolitization in an Extension-Related Hydrothermal System, Mary Kathleen, Australia. Journal of Petrology, 35(6): 1455-1491. doi: 10.1093/petrology/35.6.1455 [22] Pollard, P.J., 2001. Sodic (-Calcic) Alteration in Fe-Oxide-Cu-Au Districts: An Origin Via Unmixing of Magmatic H2O-CO2-NaCl±CaCl2-KCl Fluids. Mineralium Deposita, 36(1): 93-100. doi: 10.1007/s001260050289 [23] Rooney, T.O., 2010. Geochemical Evidence of Lithospheric Thinning in the Southern Main Ethiopian Rift. Lithos, 117(1-4): 33-48. doi: 10.1016/j.lithos.2010.02.002 [24] Shinjo, R., Chekol, T., Meshesha, D., et al., 2010. Geochemistry and Geochronology of the Mafic Lavas from the Southeastern Ethiopian Rift (the East African Rift System): Assessment of Models on Magma Sources, Plume-Lithosphere Interaction and Plume Evolution. Contributions to Mineralogy and Petrology, 162(1): 209-230. doi: 10.1007/s00410-010-0591-2 [25] Sibuet, J.C., Letouzey, J., Barbier, F., et al., 1987. Back Arc Extension in the Okinawa Trough. Journal of Geophysical Research, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041 [26] Sun, D. Z, Hu, W.X., 1993. Precambrian Chronological-Tectonic Frame and Crustal Texture in Zhongtiao Mountains. Geological Publishing House, Beijing (in Chinese). [27] Sun, H.T., Zhang, Z.Q., 1994. Sm-Nd Isotopic Age of Bimodal K-Rich Meta-Volcanic Rocks in Zhongtiaoshan Mountains and Its Implications. Chinese Science Bulletin, 39(14): 1343-1344 (in Chinese). doi: 10.1360/csb1994-39-14-1343 [28] Taylor, B., Martinez, F., 2003. Back-arc Basin Basalt Systematics. Earth and Planetary Science Letters, 210(3-4): 481-497. doi: 10.1016/s0012-821x(03)00167-5 [29] Wang, C.Z., 1991. New Recognition on the "Meta-Acid Volcanic Rocks of the Jiangxian Group" in the Core Region of the Hujiayu-Shangyupo Anticline of the Zhongtiaoshan Mountains. Regional Geology of China, (2): 176-179, 181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD199102012.htm [30] Wang, C.Z., Song, H.L., Fu, Z.R., 1990. Deformation Partitioning and Determination of Shangyupo Meta-Basic Intrusive Sheet, Zhongtiaoshan Mountain. Geoscience-Journal of Graduate School, China University of Geosciences, 4(4): 35-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199004003.htm [31] Wang, J., Hattori, K.H., Kilian, R., et al., 2007. Metasomatism of Sub-Arc Mantle Peridotites Below Southernmost South America: Reduction of fO2 by Slab-Melt. Contributions to Mineralogy and Petrology, 153(5): 607-624. doi: 10.1007/s00410-006-0166-4 [32] White, R., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research, 94(B6): 7685-7729. doi: 10.1029/JB094iB06p07685 [33] Whitford, D.J., Korsch, M.J., Porritt, P.M., et al., 1988. Rare-Earth Element Mobility Around the Volcanogenic Polymentallic Massive Sulfide Deposit at Que River, Tasmania, Australia. Chemical Geology, 68(1-2): 105-119. doi: 10.1016/0009-2541(88)90090-3 [34] Whitford, D.J., McPherson, W.P.A., Wallace, D.B., 1989. Geochemistry of the Host Rocks of the Volcanogenic Massive Sulfide Deposit at Que River, Tasmania. Economic Geology, 84(1): 1-21. doi: 10.2113/gsecongeo.84.1.1 [35] Wood, S.A., Williams-Jones, A.E., 1994. The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium 4. Monazite Solubility and REE Mobility in Exhalative Massive Sulfide-Depositing Environments. Chemical Geology, 115(1-2): 47-60. doi: 10.1016/0009-2541(94)90144-9 [36] Yu, S.Q., Liu, S.W., Tian, W., et al., 2006. SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica-English Edition, 80(6): 912-924. doi: 10.1111/j.1755-6724.2006.tb00312.x [37] Zhai, M.G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China-Earth Sciences, 54(8): 1110-1120. doi: 10.1007/s11430-011-4250-x [38] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. doi: 10.1016/j.earscirev.2004.02.003 [39] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6 [40] 《中条山铜矿地质》编写组, 1978. 中条山铜矿地质. 北京: 地质出版社. [41] 傅昭仁, 李德威, 李先福, 等, 1992. 变质核杂岩及剥离断层的控矿构造解析. 武汉: 中国地质大学出版社. [42] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [43] 孙大中, 胡维兴, 1993. 中条山前寒武纪年代构造格架和年代地壳结构. 北京: 地质出版社. [44] 孙海田, 张宗清, 1994. 中条山地区双峰态钾质火山岩系Sm-Nd同位素年龄及意义. 科学通报, 39(14): 1343-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199414028.htm [45] 王春增, 1991. 中条山胡家峪-上玉坡背斜核部"绛县群变酸性火山岩" 的新认识. 中国区域地质, (2): 176-179, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199102012.htm [46] 王春增, 宋鸿林, 傅昭仁, 1990. 变形分解作用与中条山上玉坡变基性侵入岩席的厘定. 现代地质, 4(4): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199004003.htm