Kinetic Analysis and Applications to Thermochemical Sulfate Reduction of Methane: Taking Puguang Gas Reservoirs as an Example
-
摘要: 热化学硫酸盐还原反应(TSR)对气藏有改造作用.以高压釜模拟实验为基础,选取甲烷与硫酸钙反应的动力学模型求取动力学参数,并结合普光地区的热史和埋藏史再现地质条件下甲烷与硫酸盐岩的反应过程,得出在距今130 Ma(早白垩世)的飞仙关组甲烷发生了硫酸盐还原反应,反应起始温度210 ℃,持续至30 Ma前反应终止;TSR的累积消耗甲烷量仅2.4%,说明在飞仙关组TSR对甲烷的后期损耗较少,因此并不影响甲烷的后期保存,这对于较深的碳酸盐岩储层依然具有勘探意义.Abstract: Thermochemical sulfate reduction (TSR) has modified the role of the gas reservoir. Selecting kinetics model on the basis of the high pressure thermal simulation experiment, we have obtained the dynamic parameters and reproduced rock reaction of methane with sulfate in the geological conditions by considering the burial and thermal evolution history of the Puguang area. It is concluded in this study that TSR of CH4 of Feixianguan Formations began from 130 Ma, at paleo 210 ℃, and terminated 30 Ma ago; The cumulative amount of methane consumed by the TSR only amounted to 2.4%, which indicates that Feixianguan TSR in the late lost less methane without affecting the later storage of methane. So, it is of exploration significance for deep carbonate reservoirs.
-
Key words:
- CH4 /
- kinetics of chemical reactions /
- puguang gas reservoirs /
- petroleum geology
-
表 1 TSR的动力学参数
Table 1. Kinetic parameters of TSR
活化能(kJ/mol) 指前因子(min-1) 反应分数(%) 300 4.74×1016 0.053 046 310 1.84×1017 0.022 600 320 5.95×1010 0.155 865 330 1.49×109 0.315 458 340 8.42×109 0.403 557 350 1.03×1017 0.049 100 -
[1] Bildstein, R.H., Worden, E.B., 2001. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reducting. Chemical geology, 176(1-4): 173-189. doi: 10.1016/S0009-2541(00)00398-3 [2] Burnham, A.K., Happe, J.A., 1984. On the mechanism of kerogen pyrolysis. Fuel, 63(10): 1353-1356. doi: 10.1016/0016-2361(84)90336-3 [3] Chen, T.S., He, Q., Lu, H., et al., 2009. Thermal simulation experients of saturated hydrocarbons with calcium sulfate and element sulfate: implications on origin of H2S. Science in China (Ser. D), 39(12): 1701-1708 (in Chinese). doi: 10.1007/s11430-009-0126-8 [4] Cooles, G.P., Mackenzie, A.S., Quigley, T.M., 1986. Caculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10(1-3): 235-245. doi: 10.1016/0146-6380(86)90026-4 [5] Lu, S.F., 1996. Applications and theories of chemical kinetics. Petroleum Industry Press, Beijing, 54-121 (in Chinese). [6] Lu, S.F., Li, J.J., Xue, H.T., et al., 2006. Chemical kinetics of carbon isotope fractionation of oil-cracking methane and its initial application. Journal of Jilin University (Earth Science Edition), 36(5): 825-819 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200605027.htm [7] Ma, Y.S., Guo, T.L., Zhao, X.F., et al., 2007. Formation mechanism of deep quality dolomite reservior in the Puguang gas field. Science in China (Ser. D), 37(Suppl. Ⅱ): 43-52 (in Chinese). [8] Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1-2): 143-175. doi: 10.1016/S0037-0738(00)00176-7 [9] Orr, W.L., 1977. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Campos, R., Goni, J., eds., Advances in organic geochemistry. Proceeding of the 7th International Mecting on Organic Geochemistry, Marid, Spain, 571-597. [10] Tang, Y., Perry, J.K., Jenden, P.D., et al., 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 64(15): 2673-2687. doi: 10.1016/S0016-7037(00)00377-X [11] Trudinger, P.A., Chambers, L.A., Smith, J.W., 1985. Low temperature sulphate reduction: biological versus abiological. Can. J. Earth Sci., 22(12): 1910-1918. doi: 10.1139/e85-207 [12] Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas souring by thermochemical sulfate reduction at 140 degrees C. AAPG Bulletin, 79(6): 854-863. http://aapgbull.geoscienceworld.org/content/82/10/1874 [13] Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1996. The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoir. Geochimica et Cosmochimica Acta, 60(20): 3925-3931. doi: 10.1016/0016-7037(96)00216-5 [14] Xu, L.H., Lu, S.F., Chen, J.F., 2010. Evolution history from ancient oil reservoir to ancient gas reservoir in carboniferous, east Sichuan. Petroleum Geology & Experiment, 32(5): 484-486 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201005016.htm [15] Yang, C., Krouse, H.R., 2001. Fluid inclusion and stable isotopic studies of thermochemical sulphate reduction from burnt timber and crossfield east gas fields in Alberta, Canada. Bulletin of Canadian Petrol eum Geology, 49(1): 149-164. doi: 10.2113/49.1.149 [16] Yue, C.T., Li, S.Y., Ding, K.L., et al., 2005. Influence of natural gas preservation TSR reaction system simulation experimental study. Science in China (Ser. D), 35(1): 48-53 (in Chinese). [17] Zhang, S.C., Shuai, Y.H., Zhu, G.Y., 2008. TSR promotes the formation of oil-cracking gases: evidence from simulation experiments. Science in China (Ser. D), 38(3): 307-311 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200803014.htm [18] Zhang, S.C., Zhu, G.Y., Liang, Y.B., 2006. Probe into formation mechanism of H2S and high-quality reservoirs of Puguang large gas field in Sichuan basin. Geological Review, 52(2): 230-235 (in Chinese with English abstract). http://www.researchgate.net/publication/291022969_Probe_into_formation_mechanism_of_HS_and_high-quality_reservoirs_of_Puguang_Large_Gas_Field_in_Sichuan_Basin2 [19] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006. Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan basin. Geochimica, 35(4): 333-345 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200604011.htm [20] 陈腾水, 何琴, 卢鸿, 等, 2009. 饱和烃与硫酸钙和元素硫的热模拟实验对比研究: H2S成因探讨. 中国科学(D辑), 39(12): 1701-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912006.htm [21] 卢双舫, 1996. 有机质成烃动力学理论及其应用. 北京: 石油工业出版社, 54-121. [22] 卢双舫, 李吉君, 薛海涛, 等, 2006. 油成甲烷碳同位素分馏的化学动力学及其初步应用. 吉林大学学报(地球科学版), 36(5): 825-819. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200605027.htm [23] 马永生, 郭彤楼, 赵雪凤, 等, 2007. 普光气田深部优质白云岩储层形成机制. 中国科学(D辑), 37(增刊Ⅱ): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2005.htm [24] 徐立恒, 卢双舫, 陈践发, 2010. 川东石炭系古油藏-古气藏演化史研究. 石油实验地质, 32(5): 484-486. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201005016.htm [25] 岳长涛, 李术元, 丁康乐, 等, 2005. 影响天然气保存的TSR反应体系模拟实验研究. 中国科学(D辑), 35(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200501004.htm [26] 张水昌, 帅燕华, 朱光有, 2008. TSR促进原油裂解成气: 模拟实验证据. 中国科学(D辑), 38(3): 307-311. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200803004.htm [27] 张水昌, 朱光有, 梁英波, 2006. 四川盆地普光大型气田H2S及优质储层形成机理探讨. 地质论评, 52(2): 230-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200602013.htm [28] 朱光有, 张水昌, 梁英波, 等, 2006. 四川盆地H2S的硫同位素组成及其成因探讨. 地球化学, 35(4): 333-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200604011.htm