Fluid Inclusion and Micro-FTIR Evidence for Hydrocarbon Charging Fluid Evolution of the Ordovician Reservoir of Halahatang Depression, the Tarim Basin
-
摘要: 应用烃类包裹体偏光-荧光镜下特征、盐水包裹体均一温度及油包裹体红外光谱特征,研究塔里木盆地哈拉哈塘凹陷奥陶系油藏成藏流体特征及演化历史.实验结果表明:油藏主要经历2期成藏,早、晚两期包裹体均一温度峰值分别在为72.5~78.5 ℃和92.1~99.7 ℃;油包裹体红外光谱实验再次表明,油包裹体内普遍含有水;还发现原生包裹体水/油相比值较大(4.6~2.1),烃类成熟度参数较低(CH2/CH3比值为7.3~4.5);次生包裹体水/油比值较小(1.1~0.4),烃类成熟度较高(CH2/CH3比值为2.9~1.9);原生包裹体普遍含有硫醇类化合物,而次生包裹体几乎不含有.对比奥陶系原油地球化学特征发现,含硫醇类化合物为油藏早海西期生物降解作用形成,海西晚期较高成熟度原油的大量充注,使硫醇类化合物含量不断降低,同时部分硫醇类化合物开始发生裂解生成少量H2S.Abstract: The evolution of the hydrocarbon charging fluids of the Ordovician reservoir, Halahatang depression and the Tarim basin, was studied by the evidence of inclusion petrography, transmitted light-incident fluorescence, homogenization temperature and Micro-FTIR of the petroleum inclusions. The experiments data show that: firstly, two hydrocarbon charging stages were determined, the peak homogenization temperature of associated saline inclusions were 72.5-78.5 ℃ and 92.1-99.7 ℃ respectively; secondly, the Micro-FTIR data confirm that there generally exist H2O in the petroleum inclusion; furthermore, the ratio of H2O/(CH2+CH3) in the primary hydrocarbon inclusions is larger (4.6-2.1) than the ratio (1.1-0.4) in the secondary hydrocarbon inclusions, and the maturity of the primary hydrocarbon inclusions (CH2/CH3 ratio is 7.3-4.5) is lower than the maturity of the secondary hydrocarbon inclusions (CH2/CH3 ratio is 2.9-1.9); lastly, sulf-alcohols compounds generally exist in the primary hydrocarbon inclusions, but do not exist in the secondary hydrocarbon inclusions. Compared with geochemistry data of the Ordovician hydrocarbon, sulf-alcohols compounds were the product of the early reservoir biodegradation having occurred in early-Hercynian, and in the late-Hercynian, the higher maturity hydrocarbon largely generated charges and mixes with the early hydrocarbon, which causes the content of the sulf-alcohols decreased. At the same time, part of the sulf-alcohols cracks to generate H2S.
-
Key words:
- inclusion /
- Micro-FTIR /
- charging fluid /
- Halahatang depression /
- geochemistry /
- hydrocarbon
-
图 2 典型烃类包裹体偏光-荧光照片
a.孔洞充填方解石内成带状分布,深褐色液烃包裹体(OL)、深黑色沥青包裹体(BL)和无色盐水包裹体(SL),H601-4井,样号H60-4-1,6 649.2 m,单偏光;b.视域同上,OL显示浅黄色荧光(第1期),UV激发;c.方解石脉内成线状分布的浅褐色液烃包裹体,H601-4井,样号H601-4-2,6 649.8 m,单偏光;d.视域同上,OL显示浅蓝色荧光,沿微裂缝分布的原油显示浅蓝色荧光(第2期),UV激发;e.方解石压溶缝内残存的早期原油,显示黄绿色荧光(第1期),H601-4井,样号H60-4-3,6 650.2 m,UV激发;f.方解石脉内发育浅褐色气液烃包裹体(LGL)及伴生盐水包裹体,H601-4井,样号H60-4-4,6 652.5 m,单偏光;g.视域同上,LGL发强蓝绿色荧光(第2期);h.洞缝充填方解石内发育的浅灰色气烃包裹体,H9井,样号H9-1,6 618 m,单偏光;i.重结晶方解石内片状分布灰褐色液烃包裹体、沥青和伴生盐水包裹体(第1期),H15井,样号H15-1,6 585 m,单偏光;j.视域同上,OL显黄色荧光,沥青显黄褐色荧光,UV激发;k.方解石脉内沿不同方向线状分布的灰色液烃包裹体和伴生盐水包裹体,H7-2井,样号H7-2-1,6 592 m,单偏光;l.视域同上,早期OL显黄白色,晚期OL显浅蓝白色
Fig. 2. Transmitted light and incident fluorescence photomicrographs of typical hydrocarbon inclusions
表 1 哈拉哈塘凹陷奥陶系储层烃类包裹体类型划分及特征
Table 1. Classification and characteristics of hydrocarbon inclusions in the Ordovician reservoir in the Halahatang depression
井号 井段(m) 宿主矿物 烃类包裹体 同期盐水包裹体 期次 类型 荧光颜色 冰点温度(℃) 均一温度(℃) 气/液 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -3.4 73.5 10 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -2.8 67.3 15 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -3.8 76.6 10 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -4.2 75.5 10 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -3.7 78.7 10 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -5.1 80.3 5 第1期 H601-4 6 649~6 652.5 孔洞充填方解石 原生,OL,BL为主 浅黄、黄绿色 -4.8 82.5 5 第1期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -2.0 88.5 10 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -3.1 88.5 15 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -3.5 97.3 15 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -2.8 98.5 15 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -4.5 102.6 10 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -5.6 112.3 10 第2期 H601-4 6 649~6 652.5 方解石脉 次生,OL为主,LGL其次 蓝绿色 -5.2 118.6 10 第2期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -3.5 66.2 5 第1期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -3.8 64.5 5 第1期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -3.0 78.8 10 第1期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -4.6 79.5 10 第1期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -2.8 78.5 10 第1期 H9 6 615~6 619.0 孔洞充填方解石 原生,OL 浅黄色 -5.2 92.1 10 第1期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -2.8 82.5 15 第2期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -3.6 86.7 15 第2期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -3.1 95.8 10 第2期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -4.5 98.5 15 第2期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -3.5 99.5 15 第2期 H9 6 615~6 619.0 方解石脉 次生,LGL为主,GL其次 蓝绿色 -5.2 106.8 15 第2期 H15 6 585~6 592.0 孔洞充填方解石 原生,OL,BL为主 黄色 -3.6 65.6 10 第1期 H15 6 585~6 592.0 孔洞充填方解石 原生,OL,BL为主 黄色 -3.6 65.6 10 第1期 H15 6 585~6 592.0 孔洞充填方解石 原生,OL,BL为主 黄色 -2.1 72.5 10 第1期 H15 6 585~6 592.0 孔洞充填方解石 原生,OL,BL为主 黄色 -2.7 75.8 10 第1期 H7-2 6 587~6 595.0 孔洞充填方解石 原生,OL 黄白色 -2.8 76.2 15 第1期 H7-2 6 587~6 595.0 孔洞充填方解石 原生,OL 黄白色 -3.6 78.4 15 第1期 H7-2 6 587~6 595.0 孔洞充填方解石 原生,OL 黄白色 -1.9 81.5 10 第1期 H7-2 6 587~6 595.0 孔洞充填方解石 原生,OL 黄白色 -4.0 81.5 10 第1期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -4.3 82.4 10 第2期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -4.5 88.6 10 第2期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -4.0 92.4 15 第2期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -4.0 92.4 15 第2期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -5.3 99.7 15 第2期 H7-2 6 587~6 595.0 方解石脉 次生,OL为主,LGL其次 浅蓝白色 -5.6 99.7 15 第2期 表 2 石油包裹体红外光谱参数及计算值
Table 2. Micor-infrared spectra of the petroleum inclusions and its parameters calculating
井号 样品号 层位 包裹体类型 石油包裹体特征 H2O/(CH2+CH3) CH2/CH3 Xinc, Xstd Th(℃) H601-4 H601-4-1 O2yj 原生 4.6 7.251 71.235,25.374 63.7 H601-4 H601-4-2 O2yj 原生 2.6 6.209 61.587,22.219 76.6 H601-4 H601-4-1 O2yj 次生 1.1 2.051 13.9,7.967 95.8 H601-4 H601-4-2 O2yj 次生 0.6 2.316 16.844,8.948 99.5 H601-4 H601-4-4 O2yj 次生 0.4 2.872 23.024,11.359 106.8 H15 H15-1 O2yj 原生 2.8 4.532 41.236,18.389 65.6 H15 H15-2 O2yj 原生 3.6 4.732 43.527,20.105 75.8 H7-2 H7-2-1 O2yj 原生 2.1 6.186 62.278,21.493 76.2 H7-2 H7-2-1 O2yj 次生 0.9 1.882 12.022,7.341 92.4 注:Xinc为烷烃链碳原子数;Xstd为烷烃直链碳原子数. -
[1] An, H.T., Li, H.Y., Wang, J.Z., et al., 2009. Tectonic evolution and its controlling on oil and gas accumulation in the northern Tarim basin. Geotectonica et Metallogenia, 33(1): 142-147 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200901020.htm [2] Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined use of confocal laser microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8 [3] Bellamy, L.J., 1968. Advances in infrared group frequencies. Chapman and Hall, London. [4] Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8 [5] Cao, J., Yao, S.P., Hu, W.X., et al., 2006. Detection of water in petroleum inclusions and its implications. Chinese Science Bulletin, 51(12): 1583-1588 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=22059814 [6] Chang, Y.J., Huang, W.L., 2008. Simulation of the fluorescence evolution of "live" oils from kerogens in a diamond anvil cell: application to inclusion oils in terms of maturity and source. Geochimica et Cosmochimica Acta, 72(15): 3771-3787. doi: 10.1016/j.gca.2008.05.041 [7] Chen, H.H., Li, C.Q., Zhang, X.M., et al., 2003. Using fluid inclusion to determine hydrocarbon migration and accumulation events and times in Tahe oilfield. Earth Science Frontiers, 10(1): 190 (in Chinese with English abstract). [8] Chen, Y.J., Miao, J.J., Zhang, Z.Y., 2005. Three-dimensional fluorescence spectrum and its implication for hydrocarbon. Natural Gas Geoscience, 16(1): 69-72 (in Chinese with English abstract). http://www.oalib.com/paper/1418173 [9] Chen, Y., Burke, E.A.J., 2009. Laser raman microspectroscopy of fluid inclusions: theory, method, problems and future trends. Geological Review, 55(6): 851-861 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200906012.htm [10] Cui, H.F., Zheng, D.M., Li, D.Z., 2010. Reservoir characteristics and exploration trend for carbonate inner reservoir in Yingmali area. Oil Geophysical Prospecting, 45(Suppl. 1): 196-201 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ2010S1042.htm [11] Durand, B., Espitalie, J., 1976. Geochemical studies on the organic matter from the Douala basin (Cameroon)—Ⅱ. evolution of kerogen. Geochim. Cosmochim. Acta, 40: 801-808. doi: 10.1016/0016-7037(76)90032-6 [12] Eadington, P.J., Hamilton, P.J., Bai, G.P., 1991. Fluid history analysis—a new concept for prospect evaluation. Australian Petroleum Exploration Association Journal, 31(1): 282-294. http://www.researchgate.net/publication/294696551_Fluid_history_analysis_-_A_new_concept_for_prospect_evaluation [13] Feng, Y., Chen, H.H., Ye, J.R., et al., 2009. Reservoir-forming periods and accumulation process of Chaluhe fault depression of Yitong basin. Earth Science—Journal of China University of Geosciences, 34(3): 502-510 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.056 [14] Gu, J.Y., 1999. Characteristics and evolutional model of karst reservoirs of Lower Ordovician carbonate rocks in Lunnan area of Tarim basin. Journal of Palaeogeography, 1(1): 54-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX199901008.htm [15] He, D.F., Zhou, X.Y., Zhao, C.J., 2007. The Ordovician prototype basin types and its evolution of the Tarim basin. Chinese Science Bulletin, 52(Suppl. ): 126-135 (in Chinese). [16] He, F.Q., 2002. Karst weathering crust oil-gas field on carbonate unconformity: an example from the Tahe oilfield in the Ordovician reservoir in the Tarim basin. Geological Review, 48(4): 391-397 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200204009.htm [17] Jia, C.Z., 1999. Structural characteristics and oil/gas accumulative regularity in Tarim basin. Xinjiang Petroleum Geology, 20(3): 177-183 (in Chinese with English abstract). [18] Kister, J., Guiliano, M., Largeau, C., et al., 1990. Characterization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FT-i. r. spectroscopy. Fuel, 69(11): 1356-1361. doi: 10.1016/0016-2361(90)90115-7 [19] Li, C.Q., Chen, H.H., Liu, H.M., 2010. Identification of hydrocarbon charging events by using micro-beam fluorescence spectra of petroleum inclusions. Earth Science—Journal of China University of Geosciences, 35(4): 657-662 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.080 [20] Li, M.C., 2008. Re-understanding of some problems about petroleum migration and accumulation. Xinjiang Petroleum Geology, 29(2): 133-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200802003.htm [21] Li, R.X., Jin, K.L., Liao, Y.S., 1998. Analysis of organic inclusions using Micro-FT. IR and fluorescence microscopy and its significance. Geochimica, 27(3): 244-250 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx199803004.htm [22] Liao, Z.W., Zhang, L.H., Yang, C.P., 2010. Geochemical characteristics of heavy oils from the east and west sides of Halahatang depression, Tarim basin, China: exemplifed by oils of LG7 and DH1-6-9. Geochemica, 39(2): 149-153 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201002010.htm [23] Liu, C.Y., Wu, M.B., Gong, G., 2006. Caledonian karstification of Ordovician carbonates in the Tahe oilfield, northern Tarim basin, Northwest China, and its petroleum geological significance. Geological Bulletin of China, 25(9): 1128-1134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2006Z2024.htm [24] Liu, D.H., 1995. Fluid inclusion studies—an effective means for basin fluid investigation. Earth Science Frontiers, 2(3-4): 149-154 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY504.002.htm [25] Liu, D.H., Lu, H.Z., Xiao X.M., 2007. Hydrocarbon inclusions and its application on the petroleum exploration and development. Guangdong Technology Press, Guangzhou: 147-149 (in Chinese). [26] Liu, D.H., Xiao, X.M., Tian, H., et al., 2008. Fluid inclusion types and their geological significance in petroliferous basins. Oil & Gas Geology, 29(4): 491-501 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200804015.htm [27] Liu, Y.K., Zheng, D.M., Wang, J.N., et al., 2005. The Ordovician carbonic reservoir characteristics and mineralization in Yingmaili low heave of Tarim basin. Natural Gas Geoscience, 16(5): 587-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200505008.htm [28] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid inclusion. Science Press, Beijing (in Chinese). [29] Lu, Y.H., Xiao, Z.Y., Gu, Q.Y., et al., 2007. Geochemical characteristics and accumulation of marine oil and gas around Halahatang depression, Tarim basin, China. Science in China (Ser. D), 51(Suppl. 1): 195-206 (in Chinese with English abstract). doi: 10.1007/s11430-008-5006-0 [30] Montel, F., 1993. Phase equilibria needs for petroleum exploration and production industry. Fluid Phase Equilibria, Elsevier Science Publishers B.V., Amsterdam, 84: 343-367. [31] Munz, I.A., 2001. Petroleum inclusion in sedimentary basins: systematics, analytical methods and applications. Lithos, 55(1-4): 195-212. doi: 10.1016/S0024-4937(00)00045-1 [32] Ni, X.F., Zhang, L.J., Shen, A.J., et al., 2010, Diagenesis and pore evolution of the Ordovician karst reservoir in Yingmaili-Hanilcatam region of Tarim basin. Journal of Palaeogeography, 4(8): 467-479 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201004012.htm [33] Ou, G.X., Li, L.Q., Sun, Y.M., 2006. Theory and application of the fluid inclusion research on the sedimentary basin. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200601000.htm [34] Pironon, J., 1990. Synthesis of hydrocarbon fluid inclusions at low temperature. Am. Miner., 75(1-2): 226-229. [35] Pironon, J., 2004. Fluid inclusions in petroleum environments: analytical procedure for PTX reconstruction. Acta Petrologica Sinica, 20(6): 1333-1342. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406002.htm [36] Pironon, J., Sawatzki, J., Dubessy, J., 1991. Nir FT-raman microspectroscopy of fluid inclusion: comparisons with VIS raman and FT-IR microspectroscopies. Geochimica et Cosmochemica Acta, 55: 3885-3891. doi. org/10.1016/0016-7037(91)90083-H doi: 10.1016/0016-7037(91)90083-H [37] Pironon, J., Thiery, R., Ayt Ougougdal, M., et al., 2001. FT-IR measurements of petroleum fluid inclusions: methane, n-alkanes and carbon dioxide quantitative analysis. Geofluids, 1(1): 2-10. doi: 10.1046/j.1468-8123.2001.11002.x [38] Stasiuk, L.D., Snowdon, L.R., 1997. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration. Applied Geochemistry, 12(3): 229-241. doi: 10.1016/S0883-2927(96)00047-9 [39] Sun, Q., Weng, S.F., Zhang, X., 1998. μFTIR microanalysis limits of hydrocarbon fluid inclusions: matrix minerals absorption. Earth Science—Journal of China University of Geosciences, 23(3): 248-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX803.006.htm [40] Thiery, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (petroleum inclusion thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6 [41] Van den Kerkhof, A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1-4): 27-47. doi: 10.1016/S0024-4937(00)00037-2 [42] Vry, J., Brown, P.E., Beauchaine, J., 1987. Application of micro-FTIR spectroscopy to the study of fluid inclusions. EOS, 44: 1538. [43] Yu, X.Y., Shi, J.X., 1996. Infrared, ultraviolet and fluorescence analyses and their application in the study of organic inclusions. Acta Mineralogica Sinica, 16(2): 212-217 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199602016.htm [44] Zhang, C.J., Jia, C.Z., Li, B.L., et al., 2010. Ancient karsts and hydrocarbon accumulation in the middle and western parts of the North Tarim uplift, NW China. Petroleum Exploration and Development, 37(3): 263-269 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60032-8 [45] Zhang, D., Tian, Z.J., Leng, Y.Y., 2007. Hydrocarbon and laser raman microspectroscopy characteristics of hydrocarbon inclusion. Science in China (Ser. D), 37(7): 900-907 (in Chinese with English abstract). [46] Zhang, G.Y., Zhao, W.Z., Wang, H.J., 2007, Multicycle tectonic evolution and composite petroleum systems in the Tarim basin. Oil & Gas Geology, 28(5): 653-662 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200705019.htm [47] Zhang, M., Zhang, J.F., Li, L.Q., et al., 2007. The application of laser raman microprobe to the study of fluid inclusion. World Nuclear Geoscience, 24(4): 238-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD200704014.htm [48] Zhang, S.C., Huang, H.P., 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China: part 1. oil family classification. Org. Geochem., 36(8): 1204-1214. doi: 10.1016/j.orggeochem.2005.01.013 [49] Zhao, J.Z., Li, Q.M., 2002. Accumulation stages and accumulation process of marine hydrocarbon pools in the cratonic areas of Tarim basin. Chinese Science Bulletin, 47(Suppl. ): 116-121 (in Chinese with English abstract). [50] Zhao, M.J., Pan, W.Q., Han, J.F., et al., 2007. Accumulation process and model of the Ordovician buried hill oil reservoir in the western Lunnan area, the Tarim basin. Chinese Science Bulletin, 52(Suppl. 1), 174-184 (in Chinese with English abstract). doi: 10.1007/s11434-007-6008-6 [51] Zhao, Y., J., Chen, H.H., 2008. The relationship between fluorescence colors of oil inclusions and their maturities. Earth Science—Journal of China University of Geosciences, 33(1): 33-35 (in Chinese with English abstract). [52] Zhu, G.Y., Dai, J.X., Zhang, S.C., et al., 2004. Generation mechanism and distribution characteristics of hydrogen sulfide bearing gas in China. Natural Gas Geoscience, 15(2): 166-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200402014.htm [53] Zou, Y.L., Yu, X., Li, S.H., et al., 2005. Study on hydrocarbon reservoir formation period using microscope-infrared spectroscopy method. Petroleum Geology & Oilfield Development in Daqing, 24(3): 33-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200503014.htm [54] 安海亭, 李海银, 王建忠, 等, 2009. 塔北地区构造和演化特征及其对油气成藏的控制. 大地构造与成矿学, 33(1): 142-147. doi: 10.3969/j.issn.1001-1552.2009.01.019 [55] 曹剑, 姚素平, 胡文瑄, 等, 2006. 油气包裹体中水的检出及其意义. 科学通报, 51(12): 1583-1588. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200613016.htm [56] 陈红汉, 李纯泉, 张希明, 等, 2003. 运用流体包裹体确定塔河油田油气成藏期次及主成藏期. 地学前缘, 10(1): 190. doi: 10.3321/j.issn:1005-2321.2003.01.042 [57] 陈银节, 缪九军, 张宗元, 2005. 三维荧光光谱的油气指示意义. 天然气地球科学, 16(1): 69-72. doi: 10.3969/j.issn.1672-1926.2005.01.015 [58] 陈勇, Burke, E.A.J., 2009. 流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向. 地质评论, 55(6): 851-861. https://d.wanfangdata.com.cn/Conference/6530838 [59] 崔海峰, 郑多明, 李得滋, 2010. 英买力地区碳酸盐岩内幕油气藏特征及勘探方向. 石油地球物理勘探, 45(增刊1): 196-201. http://www.cnki.com.cn/article/cjfdtotal-sydq2010s1042.htm [60] 丰勇, 陈红汉, 叶加仁, 等, 2009. 伊通盆地岔路河断陷油气成藏过程. 地球科学——中国地质大学学报, 34(3): 502-510. https://d.wanfangdata.com.cn/Periodical/dqkx200903015 [61] 顾家裕, 1999. 塔里木盆地轮南地区下奥陶统碳酸盐岩岩溶储层特征及形成模式. 古地理学报, 1(1): 54-60. doi: 10.3969/j.issn.1671-1505.1999.01.006 [62] 何登发, 周新源, 张朝军, 2007. 塔里木地区奥陶纪原型盆地类型及其演化. 科学通报, 52(增刊): 126-135. http://qikan.cqvip.com/Qikan/Article/Detail?id=25591959 [63] 何发歧, 2002. 碳酸盐岩地层中不整合—岩溶风化壳油气田——以塔里木盆地塔河油田为例. 地质论评, 48(4): 391-397. doi: 10.3321/j.issn:0371-5736.2002.04.009 [64] 贾承造, 1999. 塔里木盆地构造特征及油气聚集规律. 新疆石油地质, 20(3): 177-183. doi: 10.3969/j.issn.1001-3873.1999.03.001 [65] 李纯泉, 陈红汉, 刘惠民, 2010. 利用流体包裹体微束荧光光谱叛识油气充注期次. 地球科学——中国地质大学学报, 35(4): 657-662. http://www.cqvip.com/QK/71135X/201107/34635724.html [66] 李明诚, 2008. 对油气运聚若干问题的再认识. 新疆石油地质, 29(2): 133-137. http://www.cnki.com.cn/Article/CJFDTotal-XJSD200802003.htm [67] 李荣西, 金奎励, 廖永胜, 1998. 有机包裹体显微傅里叶红外光谱和荧光光谱测定及其意义. 地球化学, 27(3): 244-250. doi: 10.3321/j.issn:0379-1726.1998.03.005 [68] 廖泽文, 张绿惠, 杨楚鹏, 2010. 塔里木盆地哈拉哈塘凹陷东西两侧海相稠油地球化学特征: 以LG7井和DH1-6-9井稠油为例. 地球化学, 39(2): 149-153. doi: 10.3969/j.issn.1007-2802.2010.02.006 [69] 刘春燕, 吴茂炳, 巩固, 2006. 塔里木盆地北部塔河油田奥陶系加里东期岩溶作用及其油气地质意义. 地质通报, 25(9): 1128-1134. doi: 10.3969/j.issn.1671-2552.2006.09.025 [70] 刘德汉, 1995. 包裹体研究——盆地流体追踪的有力工具. 地学前缘, 2(3-4): 149-154. http://www.cnki.com.cn/Article/CJFDTotal-DXQY504.002.htm [71] 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探开发中的应用. 广州: 广东科技出版社, 147-149. [72] 刘德汉, 肖贤明, 田辉, 等, 2008. 含油气盆地中流体包裹体类型及其地质意义. 石油与天然气地质, 29(4): 491-501. doi: 10.3321/j.issn:0253-9985.2008.04.012 [73] 刘玉魁, 郑多明, 王建宁, 等, 2005. 塔里木盆地英买力低凸起奥陶系碳酸盐岩储层特征及其成岩作用. 天然气地球科学, 16(5): 587-591. http://www.cnki.com.cn/Article/CJFDTotal-TDKX200505008.htm [74] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [75] 卢玉红, 肖中尧, 顾乔元, 等, 2007. 塔里木盆地环哈拉哈塘海相油气地球化学特征与成藏. 中国科学(D辑), 37(增刊Ⅱ): 167-176. http://qikan.cqvip.com/Qikan/Article/Detail?id=26174476 [76] 倪新锋, 张丽娟, 沈安江, 等, 2010. 塔里木盆地英买力-哈拉哈塘地区奥陶系岩溶储集层成岩作用及孔隙演化. 古地理学报, 4(8): 467-479. http://manu22.magtech.com.cn/gdlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=8959 [77] 欧光习, 李林强, 孙玉梅, 2006. 沉积盆地流体包裹体研究的理论与实践. 矿物岩石地球化学通报, 25(1): 1-11. doi: 10.3969/j.issn.1007-2802.2006.01.001 [78] 孙青, 翁诗甫, 张煦, 1998. 傅立叶变换红外光谱分析矿物有机包裹体的限制. 地球科学——中国地质大学学报, 23(3): 248-252. http://www.cnki.com.cn/Article/CJFDTotal-DQKX803.006.htm [79] 余孝颖, 施继锡, 1996. 红外、紫外及荧光分析在有机包裹体研究中的应用. 矿物学报, 16(2): 212-217. doi: 10.3321/j.issn:1000-4734.1996.02.017 [80] 张朝军, 贾承造, 李本亮, 等, 2010. 塔北隆起中西部地区古岩溶与油气聚集. 石油勘探与开发, 37(3): 263-269. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201003003.htm [81] 张光亚, 赵文智, 王红军, 2007. 塔里木盆地多旋回构造演化与复合含油气系统. 石油与天然气地质, 28(5): 653-662. doi: 10.3321/j.issn:0253-9985.2007.05.017 [82] 张敏, 张建锋, 李林强, 等, 2007. 激光拉曼探针在流体包裹体研究中的应用. 世界核地质科学, 24(4): 238-244. doi: 10.3969/j.issn.1672-0636.2007.04.010 [83] 张鼐, 田作基, 冷莹莹, 2007. 烃和烃类包裹体的拉曼特征. 中国科学(D辑), 37(7): 900-907. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200707004.htm [84] 赵靖舟, 李启明, 2002. 塔里木盆地克拉通区海相油气成藏期与成藏史. 科学通报, 47(增刊): 116-121. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2002S1017.htm [85] 赵孟军, 潘文庆, 韩剑发, 等, 2007. 塔里木盆地轮西地区奥陶系潜山油藏成藏过程及聚集模式. 科学通报, 52(增Ⅰ): 174-184. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2007S1021.htm [86] 赵艳军, 陈红汉, 2008. 油包裹体荧光颜色及其成熟度关系. 地球科学——中国地质大学学报, 33(1): 91-96. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200801015.htm [87] 朱光有, 戴金星, 张水昌, 等, 2004. 含硫化氢天然气的形成机制及分布规律研究. 天然气地球科学, 15(2): 166-170. doi: 10.3969/j.issn.1672-1926.2004.02.014 [88] 邹育良, 俞萱, 李松花, 等, 2005. 利用显微-红外光谱法研究油气成藏期次. 大庆石油地质与开发, 24(3): 33-35. doi: 10.3969/j.issn.1000-3754.2005.03.012