Helium and Argon Isotopic Compositions of Various Crustal Layers of a Co-Rich Fe-Mn Crust from Central Pacific
-
摘要: 对中太平洋MH海山富钴结壳不同壳层样品的稀有气体同位素丰度与组成测定结果表明: 富钴结壳中He同位素组成类似于深海沉积物, 主要来源于宇宙尘, 其3He含量由老到新呈现基本稳定的特征, 但在8 Ma时3He含量明显增加, 是其他样品的4~5倍, 与深海沉积物中3He含量在8 Ma达到最大值相吻合.在未磷酸盐化壳层中, D4、D5、D7的3He/4He比值也与深海沉积物的3He/4He比值(n×102 Ra)相当.磷酸盐化壳层中3He/4He比值相对较低, 是由于磷酸盐化过程中生成的碳氟磷灰石中富集4He而贫3He, 从而引起磷酸盐化壳层中4He含量明显增加, 导致磷酸盐化壳层3He/4He比值降低.结壳中结构相对疏松的壳层有利于对Ar的吸附, 大部分Ar可能是在结壳生长过程中从周围海水中直接吸附到结壳中的.Abstract: The noble gas isotopes abundance and composition were determined for various layers of a Co-rich Fe-Mn crust from seamount MH in the central Pacific. The He isotopic compositions of this Co-rich crust are similar to those of the abyssal sediments, and are mainly originated from the cosmic dust. 3He contents of the Co-rich crust are nearly constant throughout the section, but the 3He content increases significantly in 8 Ma, which is 4-5 times those of other samples, which responds to the 3He content maximum of the abyssal sediment in 8 Ma. In non-phosphatized Fe-Mn crust layers, the 3He/4He ratios of D4, D5 and D7 are also equivalent to the 3He/4He values n×102 Ra of the abyssal sediments. The 3He/4He ratios in phosphatized layers are relatively low, which resulted from incorporation of carbonate fluorapatite concentrates with enriched 4He, and depleted 3He during phosphatization. The loose layers of the Fe-Mn crust are relatively advantageous to adsorbing of Ar, and the majority of Ar in the crust possibly adsorbs directly from ambient sea water in the crust growth process.
-
Key words:
- central Pacific /
- Co-rich crust /
- He isotope /
- Ar isotope /
- sediments /
- geochemistry
-
表 1 富钴结壳MHD79 He、Ar同位素组成
Table 1. Co-rich crust MHD79 He, Ar isotopes composition
编号 层位 年代(Ma) 3He/4He(10-6) R/Ra He(10-8 cm3/g) 3He(10-16 cm3/g) 40Ar/36Ar 38Ar/36Ar Ar(10-6 cm3/g) D1 Ⅰ 71 26.08±0.24 18.63 215.91 5.63 263.90 0.143 4 2.53 D2 Ⅱ 66 12.17±0.33 8.69 167.82 2.04 249.77 0.139 7 1.70 D3 Ⅲ 57 13.52±0.16 9.66 355.80 4.81 295.45 0.187 2 222.79 D4 Ⅳ 41 429.90±6.53 307.07 7.77 3.34 291.38 0.186 7 1 393.64 D5 Ⅴ 29 314.92±3.87 224.94 10.44 3.29 292.24 0.188 2 715.48 D6 Ⅵ 8 5 112.09±92.02 3 651.49 2.89 14.70 270.41 0.164 1 2.55 D7 Ⅵ 0 704.13±11.62 502.95 3.65 2.57 288.67 0.151 7 1.30 注:年代数据依据 Li et al.(2008) ,并利用Co通量定年法内插得出;R为样品的3He/4He实测值;文中数据在标准大气压条件下测得,下同. -
[1] Amari, S., Ozima, M., 1985. Search for the origin of exotic helium in deep-sea sediments. Nature, 317(6037): 520-522. doi: 10.1038/317520a0 [2] Basu, S., Stuart, F.M., Klemm, V., et al., 2006. Helium isotopes in ferromanganese crusts from the central Pacific Ocean. Geochim. Cosmochim. Acta, 70(15): 3996-4006. doi: 10.1016/j.gca.2006.05.015 [3] Bohaty, S.M., Zachos, J.C., 2003. Significant Southern Ocean warming event in the Late Middle Eocene. Geology, 31(11): 1017-1020. doi: 10.1130/G19800.1 [4] Brandon, A.D., Graham, D.W., Waight, T., et al., 2007. 186Os and 187Os enrichments and high-3He/4He sources in the earth's mantle: evidence from icelandic picrites. Geochim. Cosmochim. Acta, 71(18): 4570-4591. doi: 10.1016/j.gca.2007.07.015 [5] Bu, W.R., Shi, X.F., Zhang, M.J., et al., 2007. He, Ne and Ar isotopic composition of Fe-Mn crusts from the western and central Pacific Ocean and implications for their genesis. Science in China (Ser. D), 50(6): 857-868. doi: 10.1007/s11430-007-0011-2 [6] Burnard, P.G., Farley, K.A., Turnrr, G., 1998. Multiple fluid pulses in a Samoan harzburgite. Chemical Geology, 147(1-2): 99-114. doi: 10.1016/S0009-2541(97)00175-7 [7] Du, X.Q., Wang, Y.H., Ren, J.G., et al., 2007. Helium isotope investigation on magnetic reversal boundaries of loess-paleosol sequence at Luochuan, Central Chinese Loess plateau. Chinese Science Bulletin, 52(17): 2407-2412. doi: 10.1007/s11434-007-0319-5 [8] Farley, K.A., 1995. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature, 376(6536): 153-156. doi: 10.1038/376153a0 [9] Farley, K.A., Love, S.G., Patterson, D.B., 1997. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta, 61(11): 2309-2316. doi: 10.1016/S0016-7037(97)00068-9 [10] Farley, K.A., Patterson, D.B., 1995. A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature, 378(6557): 600-603. doi: 10.1038/378600a0 [11] Farley, K.A., Vokrouhlicky, D., Bottke, W.F., 2006. A Late Miocene dust shower from the break-up of an asteroid in the main belt. Nature, 439(7074): 295-297. doi: 10.1038/nature04391 [12] Graf, T., Marti, K., 1995. Collisional history of H chondrites. J. Geophys. Res., 100(E10): 21247-21263. doi: 10.1029/95JE01903 [13] Halbach, P.E., Sattler, C.D., Teichmann, F., et al., 1989. Cobalt-rich and platinum-bearing manganese crust deposits on seamounts: nature, formation and metal potential. Marine Mining, 8: 23-39. [14] Hu, R.Z., Bi, X.W., Turner, G., et al., 1999. Gold metallogenic fluids helium and argon isotopic geochemical in the Ailao Mountain Gold Belt. Science in China (Ser. D), 29(4): 321-330 (in Chinese). [15] Huber, M., Sloan, L.C., 2000. Climatic responses to tropical sea surface temperature changes on a "greenhouse" earth. Paleoceanography, 15(4): 443-450. doi: 10.1029/1999PA000455 [16] Kennett, J.P., Stott, L.D., 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353(6341): 225-229. doi: 10.1038/353225a0 [17] Kerr, A.C., Marriner, G.F., Tarney, J., et al., 1997. Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 677-702. doi: 10.1093/petrology/38.6.677 [18] Kurz, M.D., Geist, D., 1999. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta, 63(23-24): 4139-4156. doi: 10.1016/S0016-7037(99)00314-2 [19] Lal, D., Jull, A.J.T., 2005. On the fluxes and fates of 3He accreted by the earth with extraterrestrial particles. Earth Planet Sci. Lett., 235(1-2): 375-390. doi: 10.1016/j.epsl.2005.04.011 [20] Li, J.S., Fang, N.Q., Ding, X., et al., 2007. Microstructure and element abundance of Co-rich crust: evidences from the layered sample MHD79 collected from the central Pacific. Geoscience, 21(3): 518- 523 (in Chinese with English abstract). [21] Li, J.S., Fang, N.Q., Qu, W.J., et al., 2008. Os isotope dating and growth hiatuses of Co-rich crust from central Pacific. Science in China (Ser. D), 51(10): 1452-1459. doi: 10.1007/s11430-008-0100-x [22] Li, J.S., Ren, X.W., Shi, X.F., et al., 2009. The response of Os isotope in a ferromanganese crust from the west Pacific to paleaoceanographic events. In: Chung, J.S., ed., Deep-ocean mining review, manganese nodules, crusts, sulphide gas hydrates and engineering, deep-ocean water utilization exploration, environment, mineral processing mining systems and technology, ocean energy, underwater and subsea systems. The Eighth (2009) ISOPE Ocean Mining Symposium, Chennai, 37-41. [23] Li, Y., Song, H., Li, J., 2002. Extraterrestrial 3He in marine polymetallic nodules: a potential method for measuring growth rate of nodules. Science in China (Ser. B), 45(S1): 38-46. doi: 10.1007/BF02932205 [24] Li, Y., Song, H., Li, J., et al., 1997. Relationship between polymetallic nodules and submarine hydrothermalism in the central Pacific Ocean. Chinese Science Bulletin, 42(23): 1980-1983. doi: 10.1007/BF02883198 [25] Li, Y.H., Li, J.C., Song, H.B., 1999. A comparative study of helium isotope of polymetallic nodules and cobalt crush. Acta Geoscientia Sinica, 20(4): 378-384 (in Chinese with English abstract). [26] Li, Z.L., Hu, R.Z., Peng, J.T., et al., 2006. Helium isotope composition of fluid inclusions and the origin of ore-forming fluids of Furong Tin orefield in Hunan Province, China. Earth Science—Journal of China University of Geosciences, 31(1): 129-135 (in Chinese with English abstract). [27] Luan, X.W., 2006. Cobalt-rich ferromanganese crusts formation—evidences of hydrogenous origin. Journal of Marine Science, 24(2): 8-19 (in Chinese with English abstract). [28] Ma, J.L., Tao, M.X., 2004. Applied study of noble gas and light stable isotope gas geochemistry. Regional Geology of China, 23(4): 329-335 (in Chinese with English abstract). [29] Ma, T., Wang, Y., Guo, Q., 2009. Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, Northern China. Journal of Earth Science, 20(5): 879-889. doi: 10.1007/s12583-009-0074-4 [30] Marcantonio, F., Anderson, R.F., Stute, M., et al., 1996. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature, 383(6602): 705-707. doi: 10.1038/383705a0 [31] Mukhopadhyay, S., Farley, K.A., Montanari, A., 2001. A 35 Myr record of helium in pelagic limestones from Italy: implications for interplanetary dust accretion from the Early Maastrichtian to the Middle Eocene. Geochim. Cosmochim. Acta, 65(4): 653-669. doi: 10.1016/S0016-7037(00)00555-X [32] Nier, A.O., Schlutter, D.J., 1992. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics, 27(2): 166-173. doi: 10.1111/j.1945-5100.1992.tb00744.x [33] Ozima, M., Podosek, F.A., 2002. Noble gas geochemistry. Cambridge University Press, New York, 286. [34] Ozima, M., Takayanagi, M., Zashu, S., et al., 1984. High 3He/4He ratio in ocean sediments. Nature, 311(5985): 448-450. doi: 10.1038/311448a0 [35] Patterson, D.B., Farley, K.A., 1998. Extraterrestrial 3He in seafloor sediments: evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta, 6(23-24): 3669-3682. doi: 10.1016/S0016-7037(98)00263-4 [36] Patterson, D.B., Farley, K.A., Norman, M.D., 1999. 4He as a tracer of continental dust: a 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean. Geochim. Cosmochim. Acta, 63(5): 615-625. doi: 10.1016/S0016-7037(99)00077-0 [37] Pepin, R.O., Palma, R.L., Schlutter, D.J., 2000. Noble gases in interplanetary dust particles, Ⅰ: the excess helium-3 problem and estimates of the relative fluxes of solar wind and solar energetic particles in interplanetary space. Meteorit. Planet. Sci., 35(3): 495-504. doi: 10.1111/j.1945-5100.2000.tb01431.x [38] Pepin, R.O., Palma, R.L., Schlutter, D.J., 2001. Noble gases in interplanetary dust particles, Ⅱ: excess helium-3 in cluster particles and modelling constraints on interplanetary dust particles exposures to cosmic ray irradiation. Meteorit. Planet. Sci., 36(11): 1515-1534. doi: 10.1111/j.1945-5100.2001.tb01843.x [39] Raquin, A., Moreira, M.A., Guillon, F., 2008. He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth and Planetary Science Letters, 274(1-2): 142-150. doi: 10.1016/j.epsl.2008.07.007 [40] Sano, Y., Toyoda, K., Wakita, H., 1985. 3He/4He ratios of marine ferromanganese nodules. Nature, 317(6037): 518-520. doi: 10.1038/317518a0 [41] Schlanger, S.O., Garcia, M.O., Keating, B.H., et al., 1984. Geology and geochronology of the line Islands. Journal of Geophysical Research, 89(B13): 11261-11272. doi: 10.1029/JB089iB13p11261 [42] Schlosser, P., Winckler, G., 2002. Noble gases in ocean waters and sediments. Rev. Mineral. Geochem., 47(1): 701-730. doi: 10.2138/rmg.2002.47.15 [43] Stuart, F.M., Harrop, P.J., Knott, S., et al., 1999. Laser extraction of helium isotopes from antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He to earth. Geochim. Cosmochim. Acta, 63(17): 2653-2665. doi: 10.1016/S0016-7037(99)00161-1 [44] Stuart, F., Turner, G., Taylor, R., 1994. He-Ar isotope systematics of fluid inclusions: resolving mantle and crustal contributions to hydrothermal fluid. In: Matsuda, J., ed., Noble gas geochemistry and cosmochemistry. Terra Scientific Publishing Company, Tokyo, 261-277. [45] Sun, X.M., Xue, T., He, G.W., et al., 2006. Noble gases isotopic compositions and sources of cobalt-rich crusts from west Pacific Ocean seamounts. Acta Petrologica Sinica, 22(9): 2331-2340 (in Chinese with English abstract). [46] Tongji University geologic system, 1989. Paleoceanography conspectus. Tongji University Press, Shanghai (in Chinese). [47] Wang, X.B., 1989. Noble gas isotopic geochemical and cosmochemistry. Science Press, Beijing (in Chinese). [48] Wu, G.H., Zhou, H.Y., Ling, H.F., et al., 2005. Phosphorites in Co-rich crusts and their palaeoceanographic significance. Acta Mineralogica Sinica, 25(1): 39-44 (in Chinese with English abstract). [49] Ye, X.R., Wu, M.B., Sun, M.L., 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3): 174-178 (in Chinese with English abstract). [50] Ye, X.R., Fang, N.Q., Ding, L., et al., 2008. The noble gas contents and helium and argon isotopic compositions in the cobalt-rich crusts from the Magellan seamounts. Acta Petrologica Sinica, 24(1): 185-192 (in Chinese with English abstract). [51] Zachos, J.C., Lohmann, K.C., Walker, J.C.G., et al., 1993. Abrupt climate change and transient climates in the Paleogene: a marine perspective. J. Geol., 101(2): 193-213. doi: 10.1086/648216 [52] Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalayas: constraints from multi-isotope geochemistry. Earth Science—Journal of China University of Geosciences, 35(6): 1000-1009 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.113 [53] 胡瑞忠, 毕献武, Turner, G., 等, 1999. 哀牢山金矿带金成矿流体He和Ar同位素地球化学. 中国科学(D辑), 29(4): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199904004.htm [54] 李江山, 方念乔, 丁旋, 等, 2007. 富钴结壳显微构造与元素含量: 基于中太平洋MHD79样品的研究. 现代地质, 21(3): 518-523. doi: 10.3969/j.issn.1000-8527.2007.03.013 [55] 李延河, 李金城, 宋鹤彬, 1999. 海底多金属结核和富钴结壳的He同位素对比研究. 地球学报, 20(4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199904008.htm [56] 李兆丽, 胡瑞忠, 彭建堂, 等, 2006. 湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪. 地球科学——中国地质大学学报, 31(1): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601017.htm [57] 栾锡武, 2006. 大洋富钴结壳成因机制的探讨——水成因证据. 海洋学研究, 24(2): 8-19. doi: 10.3969/j.issn.1001-909X.2006.02.002 [58] 马锦龙, 陶明信, 2004. 稀有气体与轻稳定同位素气体地球化学的应用研究. 地质通报, 23(4): 329- 335. doi: 10.3969/j.issn.1671-2552.2004.04.005 [59] 孙晓明, 薛婷, 何高文, 等, 2006. 西太平洋海底海山富钻结壳惰性气体同位素组成及其来源. 岩石学报, 22(09): 2331-2340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609007.htm [60] 同济大学海洋地质系, 1989. 古海洋学概论. 上海: 同济大学出版社. [61] 王先彬, 1989. 稀有气体同位素地球化学和宇宙化学. 北京: 科学出版社. [62] 武光海, 周怀阳, 凌洪飞, 等, 2005. 富钴结壳中的磷酸盐岩及其古环境指示意义. 矿物学报, 25(1): 39-44. doi: 10.3321/j.issn:1000-4734.2005.01.007 [63] 叶先仁, 方念乔, 丁林, 等, 2008. 麦哲伦海山富钴结壳的稀有气体丰度及He、Ar同位素组成. 岩石学报, 24(1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801018.htm [64] 叶先仁, 吴茂炳, 孙明良, 2001. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 20(3): 174-178. doi: 10.3969/j.issn.0254-5357.2001.03.003 [65] 张建芳, 郑有业, 张刚阳, 等, 2010. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约. 地球科学——中国地质大学学报, 35(6): 1000-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006011.htm