Hematite and Goethite Distribution in the Yangtze River Sediments by Using Diffused Reflectance Spectroscopy
-
摘要: 赤铁矿和针铁矿是自然界常见的风化产物,对气候环境具有灵敏的指示作用.本文利用漫反射光谱技术,分析了长江干流及其主要支流悬浮颗粒物及河漫滩沉积物中赤铁矿和针铁矿的分布特征.结果表明,长江沉积物中可见光漫反射光谱一阶导数赤铁矿特征峰出现在565 nm处,针铁矿一阶导数主峰出现在505 nm处,次峰出现在435 nm处.与以往在黄土研究中的结果不同,长江沉积物中针铁矿一阶导数主峰的峰高普遍低于针铁矿次峰的一阶导数峰高.在长江流域内,干流样品赤铁矿和针铁矿含量变化不大,而上游支流赤铁矿和针铁矿含量总体较低,反映了它们的来源不同和水动力作用影响.长江与黄河沉积物、黄土及粉尘的漫反射光谱数据对比发现,不同环境下赤铁矿和针铁矿含量差别明显,具有一定的气候环境与源区指示意义.Abstract: As two common weathering minerals, hematite and goethite are generally regarded as sensitive indicators for environment. In this paper, suspended particle matter and floodplain sediments from the main stream and major tributaries of the Yangtze River are systemically studied by diffuse reflectance spectroscopy (DRS). The result reveals that the first derivative curve peak for hematite in the Yangtze River sediments occurs at 565 nm, while the first derivative curve main peak for goethite occurs at 505 nm and secondary peak for goethite occurs at 435 nm. It is different from previous studies on loess that the height of goethite's main peak in the Yangtze River sediments is overall higher than its secondary peak. In the Yangtze River catchment, both hematite and goethite are quite homogeneous in the Yangtze River main stream due to the hydrodynamic mixing, while variations in hematite and goethite contents are larger in the tributaries. Clear differences in DRS are observed between the Yangtze River and Huanghe sediments, loess and dust, which implies that the DRS method may shed new light on discriminating sediment provenances.
-
Key words:
- hematite /
- goethite /
- diffuse reflectance spectroscopy /
- Yangtze River /
- sediments /
- source tracer /
- mineralogy
-
图 3 长江干、支流赤铁矿和针铁矿一阶导数特征峰值分布
A.金沙江-石鼓;B.金沙江-金安桥;C.金沙江-攀枝花;D.金沙江-攀枝花;E.雅砻江-攀枝花;F.金沙江-宜宾;G.大渡河-乐山;H.大渡河-乐山;I.岷江-宜宾;J.长江-宜宾;K.长江-泸州;L.长江-泸州;M.沱江-泸州;N.长江-重庆;O.涪江-合川;P.嘉陵江-合川;Q.乌江-涪陵;R.长江-万州;S.沅江-常德;T.汉江-仙桃;U.长江-大通;V.长江-大通;W.长江-南通;X.长江-崇明岛
Fig. 3. Distribution of hematite and goethite in Yangtze River sediments
-
[1] Arimoto, R., Balsam, W., Schloesslin, C., 2002. Visible spectroscopy of aerosol particles collected on filters: iron-oxide minerals. Atmospheric Environment, 36(1): 89-96. doi: 10.1016/S1352-2310(01)00465-4 [2] Balsam, W.L., Damuth, J.E., 2000. Further investigations of shipboard vs. shore-based spectral data: implications for interpreting leg 164 sediment composition. In: Paull, C.K., Matsumoto, R., Wallace, P.J., eds., Proceedings of the ocean drilling program. Sci. Results, College Station, Texas (Ocean Drilling Program), 164: 313-324. [3] Balsam, W.L., Deaton, B.C., 1996. Determining the composition of Late Quaternary marine sediments from NUV, VIS, and NIR diffuse reflectance spectra. Marine Geology, 134(1-2): 31-55. doi: 10.1016/0025-3227(96)00037-0 [4] Balsam, W., Damuth, J.E., Deaton, B., 2007. Marine sediment components: identification and dispersal assessed by diffuse reflectance spectrophotometry. International Journal of Environment and Health, 1(3): 403-426. doi: 10.1504/IJENVH.2007.017869 [5] Balsam, W., Ellwood, B., Ji, J.F., 2005. Direct correlation of the marine oxygen isotope record with the Chinese Loess plateau iron oxide and magnetic susceptibility records. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(1-2): 141-152. doi: 10.1016/j.palaeo.2005.02.009 [6] Balsam, W., Ji, J.F., Chen, J., 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters, 223(3-4): 335-348. doi: 10.1016/j.epsl.2004.04.023 [7] Burns, R.G., 1993. Mineralogical applications of crystal field theory. In: Putnis, A., Lieberman, R.C., eds., Cambridge topics in mineral physics and chemistry. Cambridge University Press, London, 551. doi: 10.2277/0521430771 [8] Chen, T.H., Xie, Q.Q., Xu, H.F., et al., 2010. Characteristics and formation mechanism of pedogenic hematite in Quaternary Chinese loess and paleosols. Catena, 81(3): 217-225. doi: 10.1016/j.catena.2010.04.001 [9] Cornell, R.M., Schwertmann, U., 2003. The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-Vch, Weinheim. [10] Deaton, B.C., Balsam, W.L., 1991. Visible spectroscopy—a rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Research, 61(4): 628-632. doi: 10.1306/D4267794-2B26-11D7-8648000102C1865D [11] Ji, J.F., Balsam, W., Chen, J., et al., 2002. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals, 50(2): 208-216. doi: 10.1346/000986002760832801 [12] Ji, J.F., Chen, J., Balsam, W., 2007. Quantitative analysis of hematite and goethite in the Chinese loess-paleosol sequences and its implication for dry and humid variability. Quaternary Sciences, 27(2): 221-229 (in Chinese with English abstract). [13] Ji, J.F., Chen, J., Balsam, W., et al., 2004. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian monsoon to the tropical Pacific. Geophysical Research Letters, 31(3): L03207. doi: 10.1029/2003GL018975 [14] Ji, J.F., Zhao, L., Balsam, W., et al., 2006. Detecting chlorite in the Chinese loess sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals, 54(2): 266-273. doi: 10.1346/CCMN.2006.0540211 [15] Liu, L.W., Zheng, H.B., Jian, Z.M., 2005. Visible reflectance record of South China Sea sediments during the past 220 ka and its implications for East Asian monsoon variation. Earth Science—Journal of China University of Geosciences, 30(5): 543-549 (in Chinese with English abstract). [16] Liu, Q.S., Banerjee, S.K., Jackson, M.J., et al., 2004. New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophysical Journal International, 158(2): 506-514. doi: 10.1111/j.1365-246X.2004.02348.x [17] Liu, T.S., 1985. Loess and the environment. China Ocean Press, Beijing. [18] Lin, X.T., Li, W.R., Shi, Z.B., 2003. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China. Marine Geology and Quaternary Geology, 23(3): 17-21 (in Chinese with English abstract). [19] Mao, C.P., 2009. Geochemical and mineralogical studies of the sediment (suspended sediment) in Changjiang River Drainage basin (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). [20] Ren, M.E., Shi, Y.L., 1986. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research, 6(6): 785-810. doi: 10.1016/0278-4343(86)90037-3 [21] Northeast Institute of Geography and Agricultural Ecology, 1998. Atlas of study on background value of aquatic environment of the Yangtze River valley. Science Press, Beijing (in Chinese with English abstract). [22] Schwertmann, U., 1971. Transformation of hematite to goethite in soils. Nature, 232: 624-625. doi: 10.1038/232624a0 [23] Schwertmann, U., 1988. Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki, J.W., Goodman, B.A., Schwertmann, U., eds., Iron in soils and clay minerals. Reidel Publishing Company, Dordrecht, 267-308. [24] Shen, Z.X., Cao, J.J., Zhang, X.Y., et al., 2006. Spectroscopic analysis of iron-oxide minerals in aerosol particles from northern China. Science of the Total Environment, 367(2-3): 899-907. doi: 10.1016/j.scitotenv.2006.01.003 [25] Shen, Z.X., Zhang, X.Y., Ji, J.F., et al., 2004. Diffuse reflectance spectroscopy of iron oxides in North China dust aerosol. Progress in Natural Science, 14(8): 910-916 (in Chinese with English abstract). [26] Sherman, D.M., Waite, T.D., 1985. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70: 1262-1269. [27] Wang, Z.B., Yang, S.Y., Li, P., et al., 2006. Detrital mineral compositions of the Changjiang River sediments and their tracing implications. Acta Sedimentologica Sinica, 2006(4): 570-578 (in Chinese with English abstract). [28] Wang, Z.B., Yang, S.Y., Wang, R.C., et al., 2007. Magnetitie compostions of Changjiang River sediments and their tracing implications. Geochimica, 36(2): 176-184 (in Chinese with English abstract). [29] Yang, S.Y., Li, C.X., Zhu, J.C., et al., 2000. Provenance indicator of chemical fingerprint of magnetite from the Yangtze River and the Yellow River sediments. Geochimica, 29(5): 480-484 (in Chinese with English abstract). [30] Yang, S.Y., Wang, Z.B., Guo, Y., et al., 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Science, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002 [31] Zhang, Y.G., Ji, J.F., Balsam, W.L., et al., 2007. High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600 000 years. Earth and Planetary Science Letters, 264: 136-150. doi: 10.1016/j.epsl.2007.09.022 [32] Zhang, Y.G., Ji, J.F., Balsam, W., et al., 2009, Mid-Pliocene Asian monsoon intensification and the onset of northern hemisphere glaciation. Geology, 37(7): 599-602. doi: 10.1130/G25670A.1 [33] Zhou, W., Chen, L.X., Zhou, M., et al., 2010. Thermal identification of goethite in soils and sediments by diffuse reflectance spectroscopy. Geoderma, 155(3-4): 419-425. doi: 10.1016/j.geoderma.2010.01.001 [34] Zhou, W., Ji, J.F., Balsam, W., et al., 2007. Determination of goethite and hematite in red clay by diffuse reflectance spectroscopy. Geological Journal of China Universities, 13(4): 730-736 (in Chinese with English abstract). [35] 长春地理研究所, 1998. 长江流域水体环境背景值研究图集. 北京: 科学出版社. [36] 季峻峰, 陈骏, Balsam, W., 等, 2007. 黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究. 第四纪研究, 27(2): 221-229. doi: 10.3321/j.issn:1001-7410.2007.02.007 [37] 林晓彤, 李巍然, 时振波, 2003. 黄河物源碎屑沉积物的重矿物特征. 海洋地质与第四纪地质, 23(3): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200303004.htm [38] 刘连文, 郑洪波, 翦知湣, 2005. 南海沉积物漫反射光谱反映的220 ka以来东亚夏季风变迁. 地球科学——中国地质大学学报, 30(5): 543-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505004.htm [39] 茅昌平, 2009. 长江流域沉积物(悬浮物)的地球化学(博士学位论文). 南京: 南京大学. [40] 沈振兴, 张小曳, 季峻峰, 等, 2004. 中国北方粉尘气溶胶中铁氧化物矿物的光谱分析. 自然科学进展, 14(8): 910-916. doi: 10.3321/j.issn:1002-008X.2004.08.010 [41] 王中波, 杨守业, 李萍, 等, 2006. 长江水系沉积物碎屑矿物组成及其示踪意义. 沉积学报, 24(4): 570-578. doi: 10.3969/j.issn.1000-0550.2006.04.015 [42] 王中波, 杨守业, 王汝成, 等, 2007. 长江河流沉积物磁铁矿化学组成及其物源示踪. 地球化学, 36(2): 176-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200702007.htm [43] 杨守业, 李从先, 朱金初, 等, 2000. 长江与黄河沉积物中磁铁矿成分标型意义. 地球化学, 29(5): 480-484. doi: 10.3321/j.issn:0379-1726.2000.05.011 [44] 周玮, 季峻峰, William, B., 等, 2007. 利用漫反射光谱鉴定红粘土中针铁矿和赤铁矿. 高校地质学报, 13(4): 730-736. doi: 10.3969/j.issn.1006-7493.2007.04.017