Metallogenic Granitoid of Aolunhua Mo Deposit at North Bank of Xilamulun River
-
摘要: 内蒙古敖仑花钼矿床位于大兴安岭成矿带中南段,是西拉木伦河北岸一个典型的斑岩型钼矿床.为了精确厘定该矿床含矿岩体的成岩时代,进行了锆石LA-ICP-MS U-Pb年代学研究,结合花岗岩中锆石的微量元素特征对该矿床成矿岩体物质来源进行了深入的探讨.花岗斑岩锆石LA-ICP-MS年代学研究表明花岗斑岩的结晶年龄为135.0±1.0 Ma,为燕山期大规模中酸性岩浆活动的产物.该岩体锆石Th/U比值大于0.1,具明显的Ce正异常(Ce*为1.72~188.71)和Eu负异常(Eu*为0.05~0.57),轻稀土亏损,重稀土富集,La和Pr含量很低,而Ce正异常,显示为壳源岩浆锆石的特征.纵观矿床地质特征、成岩时代和区域构造演化,认为敖仑花钼矿床形成于大兴安岭成矿带140 Ma左右的锡多金属成矿高峰期,矿床形成于由挤压造山向碰撞伸展过渡阶段的构造背景.通过与西拉木伦河北岸新发现的钼矿床对比分析,认为天山-林西为重要的钼成矿带,这对提高该类矿床的理论研究水平和指导隐伏金属矿床的找矿勘查工作均具有重要意义.Abstract: The Aolunhua Mo deposit is a typical porphyry deposit,which is located in middle southern section of the Da Hinggan metallogenic belt. In order to determinate the petrogenetic ages of the deposit,we focus our study on granite zircons LA-ICP-MS. Combined with the trace element geochemistry in granites zircons,we discuss in-depth the ore-forming rock's material sources of the deposit. The granite zircons LA-ICP-MS analysis shows that the crystallization age of the granite is 135.0±1.0 Ma,indicating that the granite related with mineralization resulted from magmatism in Early Cretaceous period. The Th/U ratios of the ore-forming rock is greater than 0.1 with a significant positive Ce anomaly(Ce*=1.72~188.71) and negative Eu anomalies (Eu*=0.05~0.57). It can be concluded that crust-derived magmatic zircon is characterized by poor LREE,rich HREE,low La,Pr content and positive Ce anomaly. Combined with ore deposit geology and mineralization epoch as well as regional tectonic evolution,we draw a conclusion that formation of the Aolunhua Mo deposit is in the peak metallogenic epoch as 140 Ma in the Da Hinggan region. The tectonic settings of the deposit are in the transition period from lithosphere compression to extension. We think that the Tianshan-Linxi is a crustal type section,it has an important role for research this area. At the same time,we contrast some newly discovered Mo deposits along north bank of Xilamulun River,and find that Tianshan-Linxi is an important Mo ore-forming belt,which facilitates the understanding of regional controlling tectonics and prospecting of the ore deposits.
-
Key words:
- porphyry type deposit /
- metallogenic granitoids /
- zircons /
- trace elements /
- Aolunhua Mo deposit /
- ore prospecting /
- ore deposits.
-
图 1 大兴安岭南段及邻区构造简图(据刘建明等,2004绘改)
1.主要断裂;2.国界;3.断裂编号;4.斑岩型矿床;①华北地台北缘深断裂;②西拉木伦河断裂;③二连-贺根山深断裂;④乌怒尔鄂伦春断裂;⑤德尔布干断裂;⑥大兴安岭主脊断裂;⑦嫩江断裂
Fig. 1. Simplified tectonic map of the southern Da Hinggan Mountains and their adjacent area
图 2 敖仑花钼铜矿床矿区地质简图(据徐巧等,2010绘改)
1.花岗斑岩体;2.英安斑岩;3.石英闪长玢岩;4.石英斑岩;5.其他脉岩;6.二叠系索伦组
Fig. 2. Simplified geologicmap of the Aolunhua Mo-Cu deposit Inner Mongolia
表 1 敖仑花钼矿床花岗斑岩的常量元素(%)、微量元素(10-6)的含量
Table 1. The component of macroelements (%) and trace elements(10-6) of granites from Aolunhua deposit
岩性 花岗岩 细粒斑状花岗闪长岩 花岗岩 细粒斑状花岗闪长岩 细粒斑状花岗闪长岩 样号 AL01 AL03 AL05 AL03-01 AL03-02 Al2O3 12.87 13.30 12.93 10.64 12.21 SiO2 73.03 71.04 70.00 77.05 74.41 CaO 1.55 2.24 2.72 1.08 1.54 K2O 4.37 4.19 4.04 4.76 4.48 TiO2 0.30 0.42 0.42 0.26 0.34 Fe2O3 2.30 2.95 3.23 1.05 1.47 MgO 0.61 0.81 0.78 0.51 0.69 Na2O 3.92 4.37 3.04 2.98 3.56 MnO 0.031 0.038 0.032 0.028 0.022 P2O5 0.18 0.18 0.16 0.09 0.12 烧失量 0.58 0.24 2.32 1.23 0.91 FeO 0.90 2.10 1.90 0.65 1.20 Li 9.93 13.2 21.7 8.47 9.01 Be 2.22 1.90 1.28 1.99 2.03 Sc 7.14 7.25 4.42 2.59 3.17 V 29.6 33.0 32.6 26.7 34.8 Cr 4.19 4.56 5.89 8.36 8.17 Co 3.54 4.06 7.27 1.63 2.48 Ni 2.46 29.60 3.10 0.928 1.30 Cu 275 7 069 2 852 142 221 Zn 114.0 5 339.0 212.0 52.3 31.3 Ga 17.6 18.7 17.6 16.5 17.1 Rb 116.0 97.1 125.0 113.0 115.0 Sr 466 431 233 409 453 Zr 66.4 72.8 63.0 56.1 65.8 Nb 4.20 5.32 5.49 4.84 5.34 Hf 2.21 2.66 2.43 1.68 2.02 Ta 0.402 0.438 0.416 0.361 0.401 W 25.1 3.10 15.8 12.4 11.4 Re 0.043 0.018 1.950 0.578 0.187 Tl 0.672 0.526 0.884 0.596 0.504 Pb 37.30 229.00 36.50 21.00 9.74 Bi 1.33 1.19 19.70 2.53 1.04 Th 5.46 6.61 5.34 4.12 4.61 U 0.990 7.15 1.58 2.28 1.73 Dy 1.66 1.66 1.87 1.56 1.48 Ho 0.296 0.296 0.311 0.249 0.273 Er 0.816 0.880 0.855 0.685 0.762 Tm 0.135 0.129 0.135 0.118 0.136 Yb 0.815 0.871 0.839 0.724 0.714 Lu 0.141 0.131 0.135 0.106 0.111 Y 9.00 8.73 9.16 8.40 8.31 B 2.40 1.27 4.39 2.06 2.26 表 2 敖仑花(AL03)号样品中单颗粒锆石U-Pb同位素测定结果
Table 2. The dating results of U-Pb isotopes for single zircon in sample AL03 of Aolunhua
样号 组成(μg/g) 比值 年龄(Ma) Th/U 206Pb 207Pb 208Pb 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th AL03-01 29.49 1.620 1.831 149.73 346.53 0.048 62 0.144 82 0.021 07 0.006 97 188 137 134 140 0.43 AL03-02 30.56 1.604 2.191 177.31 357.54 0.048 73 0.138 98 0.021 16 0.007 05 81 132 135 142 0.50 AL03-03 35.75 1.920 2.640 211.88 418.38 0.047 29 0.141 84 0.021 16 0.007 12 129 135 135 143 0.51 AL03-04 39.41 2.140 3.060 258.55 463.67 0.052 30 0.142 86 0.021 05 0.006 77 158 136 134 136 0.56 AL03-05 24.90 1.339 1.292 106.04 289.12 0.048 96 0.143 52 0.021 33 0.006 96 138 136 136 140 0.37 AL03-06 34.34 1.841 3.880 313.88 406.58 0.048 83 0.140 33 0.020 93 0.007 05 130 133 134 142 0.77 AL03-07 30.08 1.616 2.086 164.92 351.59 0.048 85 0.142 47 0.021 20 0.007 22 135 135 135 145 0.47 AL03-08 37.76 1.969 1.412 113.42 442.43 0.048 78 0.137 95 0.021 15 0.007 11 64 131 135 143 0.26 AL03-09 47.40 2.790 4.440 364.70 569.44 0.048 95 0.149 62 0.020 74 0.006 92 299 142 132 139 0.64 AL03-10 30.25 1.633 1.833 149.59 351.61 0.049 71 0.143 99 0.021 32 0.007 00 146 137 136 141 0.43 AL03-11 18.91 1.028 1.393 86.78 190.36 0.048 99 0.144 21 0.021 41 0.007 77 140 137 137 156 0.46 AL03-12 50.45 2.720 4.110 333.74 579.63 0.048 58 0.145 41 0.021 58 0.007 04 141 138 138 142 0.57 AL03-13 32.05 1.724 2.079 169.46 377.09 0.047 20 0.141 80 0.021 08 0.007 01 137 135 134 141 0.45 AL03-15 23.66 1.294 0.551 46.05 290.51 0.047 34 0.145 54 0.021 23 0.007 02 181 138 135 141 0.16 AL03-16 45.95 2.470 4.860 415.08 555.05 0.048 52 0.138 92 0.020 56 0.006 67 147 132 131 134 0.75 AL03-17 49.49 2.600 3.810 319.27 595.90 0.048 63 0.139 85 0.020 88 0.006 56 128 133 133 132 0.53 AL03-18 62.73 3.280 5.610 467.96 768.17 0.049 63 0.133 79 0.020 55 0.006 65 59 127 131 134 0.61 AL03-20 44.42 2.360 8.480 710.61 542.18 0.049 38 0.134 66 0.020 63 0.006 77 66 128 132 136 0.76 AL03-21 2.49 0.133 0.226 18.46 28.96 0.048 52 0.142 90 0.02136 0.007 00 125 136 136 141 0.64 AL03-22 18.43 0.994 1.616 124.12 204.18 0.048 59 0.147 66 0.022 02 0.007 33 130 140 140 148 0.61 AL03-23 29.89 1.637 3.410 249.50 340.75 0.048 59 0.149 14 0.021 79 0.007 82 178 141 139 157 0.73 AL03-24 20.96 1.119 2.221 179.22 253.51 0.048 88 0.138 45 0.020 60 0.006 96 135 132 131 140 0.71 AL03-26 36.54 1.960 2.850 232.71 425.82 0.048 62 0.142 75 0.021 33 0.007 03 125 135 136 142 0.55 AL03-27 41.41 2.220 2.550 204.12 486.42 0.048 73 0.141 81 0.021 16 0.007 18 128 135 135 145 0.42 AL03-28 30.19 1.620 2.122 166.71 343.07 0.047 29 0.146 62 0.021 88 0.007 30 128 139 140 147 0.49 AL03-29 10.18 0.549 0.725 55.00 117.34 0.052 30 0.145 42 0.021 57 0.007 57 142 138 138 152 0.47 AL03-30 47.22 2.520 4.700 399.45 560.76 0.048 96 0.139 33 0.020 94 0.006 76 111 132 134 136 0.71 表 3 敖仑花钼矿床细粒斑状花岗闪长岩中锆石微量元素分析结果(90Zr,178Hf为%,其余为10-6)
Table 3. Trace element analyses of zircons from fine grain porphyritic granite of Aolunhua deposit (90Zr, 178Hf %, others 10-6)
AL03-01 AL03-02 AL03-03 AL03-04 AL03-05 AL03-06 AL03-07 AL03-08 AL03-09 AL03-10 AL03-11 AL03-12 AL03-13 AL03-14 AL03-15 49Ti 3.03 2.87 3.32 2.42 2.15 2.60 7.32 2.49 2.82 2.74 10.91 2.94 2.73 6.95 3.63 89Y 1 100.39 1 328.41 1 134.30 1 165.77 796.49 1 541.33 1 431.76 471.55 1 038.42 1 136.44 1 020.77 1 436.96 1 058.42 1 277.40 373.79 90Zr 491 255.6 482 274.2 492 333.3 481 478.9 475 668.9 479 458.5 469 524.2 476 759.6 479 104.1 471 036.4 475 740.5 460 816.8 472 844.2 475 096.9 469 188.0 93Nb 4.030 4.830 5.330 5.720 2.500 3.090 2.610 1.210 4.600 2.790 2.600 7.030 2.710 1.000 0.954 139La 0.778 0 0.044 7 4.200 0 0.119 0 0.033 3 0.021 8 0.046 9 0.012 0 2.160 0 0.29 70 0.032 0 0.129 0 0.295 0 0.979 0 1.250 0 140Ce 26.44 33.11 43.62 31.86 19.09 48.33 16.23 13.42 41.95 21.66 19.30 38.28 23.80 7.37 5.90 141Pr 0.184 0 0.099 7 1.570 0 0.080 0 0.034 7 0.154 0 0.285 0 0.046 0 0.672 0 0.174 0 0.061 0 0.102 0 0.161 0 0.628 0 0.516 0 146Nd 1.720 1.900 8.600 1.230 0.684 4.130 5.720 0.436 4.900 1.620 1.580 1.610 1.950 6.670 2.900 147Sm 3.16 5.59 5.11 3.90 2.03 9.76 13.41 1.08 4.99 3.98 4.11 4.73 3.94 9.55 3.07 153Eu 0.877 1.380 1.327 1.275 0.731 2.880 3.590 0.608 1.384 1.100 1.147 1.298 1.235 1.830 0.399 157Gd 18.61 27.05 20.60 24.13 13.06 48.99 52.29 6.87 21.40 21.71 20.16 27.66 21.20 40.91 13.90 159Tb 7.24 9.88 7.77 8.75 5.12 15.69 16.39 2.67 7.41 8.34 7.47 10.73 7.90 13.03 4.65 163Dy 97.01 122.36 100.91 109.67 65.72 168.49 170.15 35.16 92.18 106.92 93.12 136.33 98.45 146.38 45.11 165Ho 37.69 45.96 38.61 41.41 26.82 54.48 52.26 14.07 34.58 40.59 34.92 50.65 37.46 49.19 12.19 166Er 172.27 203.10 176.73 184.69 124.45 214.97 194.73 69.62 161.81 180.72 155.47 218.66 164.39 194.64 46.24 166Tm 45.13 51.88 45.97 46.79 33.33 51.10 43.99 20.24 41.67 45.44 40.38 55.47 42.11 45.06 10.90 172Yb 535.18 617.11 551.00 547.79 422.97 581.25 475.64 283.62 512.19 528.58 477.09 637.11 492.08 485.27 128.23 175Lu 100.05 114.43 102.37 101.96 84.01 105.86 78.24 65.12 101.36 95.48 88.44 117.67 90.63 87.80 23.77 178Hf 9 334.11 9 017.03 10 056.96 9 951.02 9 356.05 9 261.37 8 263.11 9 917.20 9 748.66 8 998.79 7 946.22 10 054.13 9 209.08 6 019.05 8 618.70 181Ta 1.108 1.211 1.500 1.61 0.734 0.674 0.798 0.397 1.250 0.926 0.762 1.740 0.877 0.424 0.480 232Th 149.73 177.31 211.88 258.55 106.04 313.88 164.92 113.42 364.70 149.59 86.78 333.74 169.46 67.59 46.05 238U 346.53 357.54 418.38 463.67 289.12 406.58 351.59 442.43 569.44 351.61 190.36 579.63 377.09 139.77 290.51 Ce* 16.04 81.34 3.99 73.43 116.01 85.12 15.32 75.95 8.16 21.81 75.67 73.07 25.19 2.11 1.72 Eu* 0.28 0.29 0.35 0.31 0.38 0.33 0.37 0.52 0.35 0.29 0.32 0.27 0.33 0.24 0.16 AL03-16 AL03-17 AL03-18 AL03-19 AL03-20 AL03-21 AL03-22 AL03-23 AL03-24 AL03-25 AL03-26 AL03-27 AL03-28 AL03-29 AL03-30 49Ti 3.72 3.83 3.32 12.42 7.05 11.01 11.40 2.63 2.03 2.33 3.88 3.57 2.90 6.13 3.92 89Y 1 420.71 1 651.60 1 985.24 808.60 3 286.52 721.15 1 569.56 934.91 570.98 1 084.91 1 359.21 1 516.20 980.03 973.57 1 396.37 90Zr 465 131.3 460 473.9 462 432.5 467 410.5 463 055.8 476 714.8 469 992.5 466 770.8 463 436.1 462 163.6 478 752.2 468 543.7 482 700.4 486 641.5 489 760.7 93Nb 5.250 8.460 9.950 0.677 4.260 0.831 3.100 3.740 2.240 4.290 5.550 7.800 3.510 2.630 5.980 139La 1.490 0 0.270 0 0.117 0 1.130 0 0.076 0 0.017 4 0.541 0 0.052 2 0.072 0 0.011 1 0.039 0 0.022 8 1.370 0 0.019 5 0.883 0 140Ce 41.10 41.18 55.61 9.51 67.41 5.99 22.16 30.18 23.38 12.34 39.94 35.97 32.66 12.05 41.58 141Pr 0.319 0 0.145 0 0.110 0 0.638 0 0.826 0 0.082 0 0.285 0 0.038 0 0.036 1 0.063 3 0.067 0 0.046 0 0.370 0 0.067 0 0.273 0 146Nd 3.24 1.97 2.30 5.68 15.06 1.40 3.24 1.18 0.799 1.32 1.56 0.97 2.26 1.51 2.84 147Sm 6.10 5.47 7.57 7.83 30.49 3.42 7.15 3.21 2.30 3.87 4.86 3.90 3.04 4.46 5.26 153Eu 1.920 1.610 2.360 2.800 8.160 1.590 2.600 1.269 0.882 0.199 1.630 1.205 1.124 0.953 1.590 157Gd 32.30 34.50 43.97 29.60 115.02 15.54 36.74 17.36 13.01 22.44 28.33 23.40 17.49 21.28 28.99 159Tb 11.38 12.89 16.55 8.64 35.21 5.64 13.34 6.40 4.44 8.56 10.37 9.96 6.69 8.03 10.59 163Dy 138.56 163.86 202.52 90.63 371.49 68.59 157.20 82.55 53.64 110.33 129.74 132.80 85.17 96.29 130.07 165Ho 50.40 59.37 73.14 30.23 118.31 25.66 56.19 31.52 20.04 41.38 47.63 51.92 32.94 35.80 48.71 166Er 216.57 254.55 303.76 119.21 449.70 113.19 233.53 142.86 88.65 176.82 208.86 240.48 151.89 155.34 215.35 166Tm 54.05 63.27 73.96 28.19 99.14 28.36 56.42 37.61 22.57 42.27 51.69 62.62 41.24 37.72 54.59 172Yb 644.15 708.51 817.84 313.02 1 065.86 327.56 622.93 465.45 281.64 468.54 602.31 747.83 509.66 426.10 637.30 175Lu 118.93 121.39 136.34 57.87 171.93 61.99 111.33 91.36 53.03 81.36 107.05 139.08 103.82 77.49 119.44 178Hf 9 204.88 9 583.04 9 201.58 6 589.12 7 582.62 6 711.38 7 167.53 9 346.73 9 878.15 9 320.66 9 328.82 9 310.72 9 502.13 8 372.76 9 474.74 181Ta 1.160 2.350 2.550 0.150 0.975 0.187 0.736 0.845 0.684 1.500 1.550 1.950 0.795 0.673 1.490 232Th 415.08 319.27 467.96 35.43 710.61 18.46 124.12 249.5 179.22 107.43 232.71 204.12 166.71 55.00 399.45 238U 555.05 595.90 768.17 27.25 542.18 28.96 204.18 340.75 253.51 279.21 425.82 486.42 343.07 117.34 560.76 Ce* 13.52 48.08 91.94 2.57 22.53 19.33 13.06 150.50 106.55 52.26 140.08 188.71 10.66 46.35 19.84 Eu* 0.34 0.28 0.31 0.50 0.37 0.57 0.40 0.42 0.39 0.05 0.34 0.30 0.37 0.25 0.32 -
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S009-2541(02)00195-X [2] Belousova, E.A., Griffin, W.L., Pearson, N.J., 1998. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineralogical Magazine, 62(3): 355-366. doi: 10.1180/002646198547747 [3] Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., et al., 1987. Alpha-decay induced fracturing in zircon: the transition from the crystalline to the metamict state. Science, 235(4808): 1556-1559. doi: 10.1126/science.236.4808.1556 [4] Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257. doi: 10.1016/j.jsease.2008.05.007 [5] Chen, B., Zhao, G.C., Wilde, S., 2001. Subduction and collision related granitoids from southern Sonidzuoqi, Inner Mongolia: isotopic ages and tectonic implication. Geological Review, 47(4): 361-367(in Chinese with English abstract). [6] Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469 [7] Guo, L.J., Xie, Y.L., Hou, Z.Q., et al., 2009. Geology and ore fluid characteristics of the Bairendaba silver polymetallic deposit in Inner Mongolia. Acta Petrologica et Mineralogica, 28(1): 26-36(in Chinese with English abstract). [8] Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorphic Geol., 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x [9] Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027 [10] Li, J.Y., 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review, 44(4): 339-347 (in Chinese with English abstract). [11] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Silberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565-582(in Chinese with English abstract). http://www.researchgate.net/publication/279908280_Shuangjingzi_middle_Triassic_syn-collisional_crust-derived_granite_in_the_east_Inner_Mongolia_and_its_constraint_on_the_timing_of_collision_between_Siberian_and_Sino-Korean_paleo-plates?ev=auth_pub [12] Li, X.H., Liang, X.R., Sun, M., et al., 2000. Geochronology and geochemistry of single-grain zircons: simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur. J. Mineral., 12(5): 1015-1024. doi: 10.1127/0935-1221/2000/0012-1015 [13] Liu, J.J., Xing, Y.L., Wang, J.P., et al., 2010. Discovery of falkmanite from the Bairendaba superlarge Ag-Pb-Zn polymetallic deposit, Inner Mongolia and its origin significance. Journal of Jilin University (Earth Science Edition), 40(3): 565-572(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cckjdxxb201003012 [14] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The regional metallogeny of Da Hingganling, China. Earth Science Frontiers, 11(1): 269-277(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401036.htm [15] Lv, Z.C., Duan, G.Z., Liu, C.Q., et al., 2000. Silver deposit type, metallogenic series and metallogenic geochemical characteristics in Da Hingganling area. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 305-309(in Chinese). [16] Ma, X.H., Chen, B., Lai, Y., et al., 2009. Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit, Inner Mongolia, and its geological implications. Acta Petrologica Sinica, 25(11): 2939-2950(in Chinese with English abstract). [17] Mao, J.W., Wang, Y.T., Zhang, Z.H., et al., 2003. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas. Science in China (Series D), 46(8): 838-851. doi: 10.1007/BF02879527 [18] McInnes, B.A., Evans, N.J., Fu, F.Q., et al., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy & Geochemistry, 58(1): 467-498. doi: 10.2138/rmg.2005.58.18 [19] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re-Os isotopic dating on molybdenite separates from the Xiaodonggou porphyry Mo deposit, Hexigten Qi, Inner Mongolia. Acta Geogolical Sinica, 81(7): 898-905((in Chinese with English abstract). [20] People's Republic of China Ministry of Geology and Mineral Resources Geological Memoirs, 1991. Geological House, Beijing, 128-651 (in Chinese). [21] Qi, J.P., Chen, Y.J., Pirajno, F., 2005. Geological characteristics and tectonic setting of the epithermal deposits in the Northeast China. J. Mineral Petrol., 25(2): 47-59(in Chinese with English abstract). [22] Ren, J.S., Chen, T.Y., Niu, B.G., et al., 1992. Tectonic evolution of the continental lithosphere and metallogeny in eastern China and adjacent areas. Science Press, Beijing (in Chinese). [23] Rubatto, D., Gebauer, D., 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the western Alps. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany, 373-400 [24] Shi, Y.R., Liu, D.Y., Zhang, Q., et al., 2004. SHRIMP dating of diorites and granites in southern Suzuopi, Inner Mongolia. Acta Geologica Sinica, 78(6): 789-799(in Chinese with English abstract). [25] Shu, Q.H., Jiang, L., Lai, Y., et al., 2009. Geoehronologyand fluid inclusion study of the Aolunhua porphyry Cu-Mo deposit in Arhorqin area, Inner Mongolia. Acta Petrologica Sinica, 25(10): 2601-2614(in Chinese with English abstract). [26] Stein, H.J., Markey, R.J., Morgan, J.W., et al. 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x [27] Sun, X.G., Liu, J.M., Qin, F., et al., 2008. The new progress on polymetallic studies in Daxinganling-the revelation of the southern bank Xilamulun River Molybdenum polymetallic belt. China Ming Magazine, 17(2): 75-78(in Chinese with English abstract). [28] Valley, J.W., Chiarenzelli, J.R., MeLelland, J.M., 1994. Oxygen isolope geochemistry of zircon. Earth Plane. Sci. Lett., 126(4): 187-206. doi: 10.1016/0012-821X(94)90106-6 [29] Wang, J.B., Wang, Y.W., Wang, L.J., 2000. Copper metallogenic setting and prospecting potential in the middle-southern part of Da Hinggam Mountaints. Geology and Prospecting, 36(5): 1-4(in Chinese with English abstract). [30] Wang, J.B., Xu, X., 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31(in Chinese with English abstract). [31] Wang, L.J., Hidehiko, S., Wang, J.B., et al., 2001. Ore-forming fluid and mineralization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia. Science in China(Ser. D), 31(7): 553-562(in Chinese with English abstract). [32] Wang, Q., Zhu, D.C., Zhao, Z.D., et al., 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59-66. doi: 10.1016/i.jseaes.2011.07.027 [33] Xia, X.H., Zhao, Y.H., Yuan, J.Z., et al., 2002. Geology and mineralizing regularity of polymetallic sulfide deposits in Linxi-Tianshan district of Inner Mongilia. Geology of Chemical Minerals, 24(4): 198-206(in Chinese with English abstract). [34] Xiao, W.J., Windley, B.F., Hao, J., et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics, 22: 1069-1089. doi: 10.1029/2002TC001484 [35] Xu, Q., Fu, S.X., Yuan, J.M., et al., 2010. Geological characteristics and prospecting marks of the Aolunhua porphyry Mo-Cu deposit, Inner Mongolia. Geology and Exploration, 46(6): 1019-1028 (in Chinese with English abstract). [36] Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2010. SHRIMP zircon U-Pb ages of the Middle Neopaleozoic unmetamorphosed magmatic rocks in the southwestern slope of the Da Hinggan Mountains, Inner Mongolia. Acta Petrologica et Mineralogica, 29(6): 811-823 (in Chinese with English abstract). [37] Zeng, Q.D., Liu, J.M., 2010. Zircon SHRIMP U-Pb dating and geological significance of the granite porphyry from Banlashan porphyry molybdenum deposit in Xilamulun molybdenum metallogenic belt. Journal of Jilin University (Earth Science Edition), 40(4): 828-834 (in Chinese with English abstract). [38] Zhang, J.F., Li, Z.T., Jin, C.M., 2004. Adakites in northeastern China and their mineralized implications. Acta Petrologica Sinica, 20(2): 361-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402015.htm [39] Zhang, J.F., Quan, H., Wu, G., et al., 2000. Tectonic setting of Mesozoic volcanic rocks in Northeast China. Journal of Precious Metallic Geology, 9(1): 33-38 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GJSD200001005&dbcode=CJFD&year=2000&dflag=pdfdown [40] Zhang, K., Nie, F.J., Hou, W.R., et al., 2012. Re-Os isotopic age dating of molybdenite separates from Hashitu Mo deposit in Linxi County of Inner Mongolia and its geological significance. Mineral Deposits, 31 (1): 129- 138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201201012.htm [41] Zhang, L.C., Wu, H.Y., Chen, Z.G., et al., 2009. The metallogenic regularity and herent property of metallugens for Cu-Au-Mo deposits between south and north edges of NCC. Acta Mineralogica Sinica, (S1): 39-40(in Chinese). [42] Zhang, M., Zhai, Y.S., Shen, C.L., et al., 2011. Metallogenic system of copper polymetallic deposits in the middle-southern part of Da Hinggan Mountains, China. Geoscience, 25(5): 819-831(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201105002.htm [43] Zhang, Y.B., Sun, S.H., Mao, Q., 2006. Mesozoic O-type adakitic volcanic rocks and its petrogenesis, paleo-tectonic dynamic and mineralization significance of the eastern side of southern Da Hinggan, China. Acta Petrological Sinica, 22(9): 2289-2304 (in Chinese with English abstract). http://www.oalib.com/paper/1472201 [44] Zhao, Y.M., 1997. Metallogeny and prospective evaluation of copper-polymetallic deposits in the Da Hinggan Mountains and its adjacent regions. Earthquake Publishing House, Beijing (in Chinese). [45] Zhou, Z.H., Liu, H.W., Chang, G.X., et al., 2011. Meneralogical characteristics of skarns in the Huanggang Sn-Fe deposit of Inner Mongolia and their metallogenic indicating significance. Acta Petrologica et Mineralogica, 30(1): 97-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201101013.htm [46] 陈斌, 赵国春, Wilde, S., 2001. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义. 地质论评, 47(4): 361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005 [47] 郭利军, 谢玉玲, 侯增谦, 等, 2009. 内蒙古拜仁达坝银多金属矿矿床地质及成矿流体特征. 岩石矿物学杂志, 28(1): 26-36. doi: 10.3969/j.issn.1000-6524.2009.01.004 [48] 李锦轶, 1998. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 44(4): 339-347. doi: 10.3321/j.issn:0371-5736.1998.04.002 [49] 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [50] 刘家军, 邢永亮, 王建平, 等, 2010. 内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义. 吉林大学学报(地球科学版), 40(3): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003013.htm [51] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [52] 吕志成, 段国正, 刘丛强, 等, 2000. 大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征. 矿物岩石地球化学通报, 19(4): 305-309. doi: 10.3969/j.issn.1007-2802.2000.04.037 [53] 马星华, 陈斌, 赖勇, 等, 2009. 内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义. 岩石学报, 25(11): 2939-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911025.htm [54] 聂凤军, 张万益, 杜安道, 等, 2007. 内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义. 地质学报, 81(7): 898-905. doi: 10.3321/j.issn:0001-5717.2007.07.004 [55] 内蒙古自治区地质矿产局, 1991. 内蒙古自治区区域地质志. 北京: 地质出版社, 128-651. [56] 祁进平, 陈衍景, Pirajno, F., 2005. 东北地区浅成低温热液矿床的地质特征和构造背景. 矿物岩石, 25(2): 47-59. doi: 10.3969/j.issn.1001-6872.2005.02.009 [57] 任纪舜, 陈廷愚, 牛宝贵, 等, 1992. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社. [58] 石玉若, 刘敦一, 张旗, 等, 2004. 内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学. 地质学报, 78(6): 789-799. doi: 10.3321/j.issn:0001-5717.2004.06.009 [59] 舒启海, 蒋林, 赖勇, 等, 2009. 内蒙古阿鲁科尔沁旗敖仑花斑岩铜钼矿床成矿时代和流体包裹体研究. 岩石学报, 25(10): 2601-2614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910024.htm [60] 孙兴国; 刘建明; 覃锋, 等, 2008. 大兴安岭成矿研究新进展——西拉木伦河南岸Mo多金属成矿带的发现. 中国矿业, 17(2) : 75-78. doi: 10.3969/j.issn.1004-4051.2008.02.022 [61] 王京彬, 王玉往, 王莉娟, 2000. 大兴安岭中南段铜矿成矿背景及找矿潜力. 地质与勘探, 36(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200005000.htm [62] 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm [63] 王莉娟, 岛崎英彦, 王京彬, 等, 2001. 黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用. 中国科学(D辑), 31(7): 553-562. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200107003.htm [64] 夏学惠, 赵玉海, 袁家忠, 等, 2002. 内蒙古林西—天山地区多金属硫化物矿床地质及成矿规律. 化工矿产地质, 24(4): 198-206. doi: 10.3969/j.issn.1006-5296.2002.04.002 [65] 徐巧, 付水兴, 袁继明, 等, 2010. 赤峰敖仑花钼铜矿床地质特征及找矿标志. 地质与勘探, 46(6): 1019-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201006007.htm [66] 薛怀民, 郭利军, 侯增谦, 等, 2010. 大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学. 岩石矿物学杂志, 29(6): 811-823. doi: 10.3969/j.issn.1000-6524.2010.06.016 [67] 曾庆栋, 刘建明, 2010. 西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义. 吉林大学学报(地球科学版), 40(4): 828-834. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004013.htm [68] 张炯飞, 李之彤, 金成沫, 2004. 中国东北部地区埃达克岩及其成矿意义. 岩石学报, 20(2): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402015.htm [69] 张炯飞, 权恒, 武广, 等, 2000. 东北地区中生代火山岩形成的构造环境. 贵金属地质, 9(1): 33-38. doi: 10.3969/j.issn.1671-1947.2000.01.006 [70] 张可, 聂凤军, 侯万荣, 等, 2012. 内蒙古林西县哈什吐钼矿床辉钼矿铼-锇年龄及其地质意义. 矿床地质, 31 (1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201201012.htm [71] 张连昌, 吴华英, 陈志广, 等, 2009. 华北地台南北缘斑岩型铜金钼矿床成矿规律与专属性研究. 矿物学报, (S1): 39-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1020.htm [72] 张梅, 翟裕生, 沈存利, 等, 2011. 大兴安岭中南段铜多金属矿床成矿系统. 现代地质, 25(5): 819-831. doi: 10.3969/j.issn.1000-8527.2011.05.001 [73] 张永北, 孙世华, 毛骞, 2006. 大兴安岭南段东麓中生代O型埃达克质火山岩及其成因、古构造环境和找矿意义. 岩石学报, 22(9): 2289-2304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609003.htm [74] 赵一鸣, 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社. [75] 周振华, 刘宏伟, 常帼雄, 等, 2011. 内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义. 岩石矿物学杂志, 30(1): 97-112. doi: 10.3969/j.issn.1000-6524.2011.01.009