Characteristics and Its Geological Significance of Fluid Inclusions of the Wurinitu W-Mo Deposit in Inner Mongolia, China
-
摘要: 乌日尼图钨钼矿位于内蒙古苏尼特左旗境内,是近几年该区新发现的较大规模的钨钼矿床.钨钼矿体主要产于燕山期花岗岩体的内外接触带附近,以细脉状矿化类型为主.该矿床中的流体包裹体主要发育气液两相、富气相、富液相和纯液相包裹体等类型.包裹体均一温度为130.0~371.7 ℃(峰值为160.0~260.0 ℃),盐度为0.2%~15.9% NaCl eqv(峰值为0.2%~12.5% NaCl eqv),属于中低温、中低盐度钨钼矿床.激光拉曼和群体包裹体成分分析结果表明,流体体系气相成分以H2O、CO2为主,其次为N2、O2以及少量CO、CH4、C2H2、C2H4和C2H6等; 液相成分以Ca2+、Na+、SO42-、Cl-为主,其次为K+、F-、NO3-、Mg2+以及少量Br-和Li+.成矿流体为H2O-NaCl-CO2体系.流体包裹体氢氧同位素分析表明,成矿流体的δ18O水的含量范围为-2.11%~-0.11%,δD水的含量范围为-85%~-108%,成矿流体为岩浆水与大气降水的混合物.结合矿床地质和成矿流体特征,认为该矿床为与燕山期岩浆活动有关的中低温热液石英脉型钨钼矿床,成矿物质以深源为主.Abstract: The Wurinitu W-Mo deposit,located in Sunid Zuoqi area in the Inner Mongolia autonomous region,is a large W-Mo deposit discovered in recent years. The W-Mo orebodies mainly occurred in Yanshanian granite rock body and the nearby contact zone,with the major type of veinlet mineralization. Petrographic study of fluid inclusions suggests that the main types of fluid inclusions of Wurinitu metallogenic fluid system are two-phase vapor-liquid inclusions,vapor-rich phase inclusions,liquid-rich phase inclusions and pure liquid phase inclusions. The homogenization temperature and salinity of the fluid inclusions vary in 130.0-371.7 ℃ (the peak value vary in 160-260 ℃) and 0.2%-15.9% NaCl eqv (the peak value vary in 0.2%-12.5% NaCl eqv). The deposit belongs to a medium-low temperature,medium-low salinity W-Mo deposit. Laser Raman spectroscopic and inclusion groups components studies indicate that gas composition of the ore-forming fluid are mainly H2O and CO2,some N2 and O2,and less CO,CH4,C2H2,C2H4 and C2H6,liquid composition are mainly Ca2+,Na+,SO42-,Cl-,some K+,F-,Mg2+ and NO3-,and less Br- and Li+. The ore-forming fluids belong to the H2O-NaCl-CO2 system. The hydrogen and oxygen isotopic compositions of fluid inclusions showed that the ore-forming fluids had lower values of δ18Owater ranging from -2.11% to -0.11%,and the value of δDwater ranged from -85% to -108%. The ore-forming fluids came from the mixing of magma water and meteoric water. Based on the geological and ore-forming fluids characteristics of the deposit,it is concluded that the Wurinitu quartz vein type W-Mo deposit is a Yanshanian magmatism-related and moderate-low temperature hydrothermal system. The ore-forming materials were mainly derived from the depth.
-
表 1 乌日尼图钨钼矿床石英中流体包裹体参数特征
Table 1. Parameter characteristics of fluid inclusion in quartz from the Wurinitu tungsten and molybdenum deposit
样号 个数 大小(μm) 气液比(%) 冰点Tm, ice(℃) 均一温度Th(℃) 盐度(% NaCl eqv) 密度(g/cm3) 成矿压力(MPa) 成矿深度(km) WR-1 16 4.6~38.7 5~30 -8.1~-3.5(-6.3) 187.0~263.8(233.2) 5.7~12.1(9.5) 0.82~0.96(0.90) 51.79~74.46(64.13) 1.73~2.48(2.14) WR-2 14 4.1~13.5 10~15 -5.3~-0.3(-2.6) 224.1~243.0(238.5) 0.5~8.1(4.3) 0.81~0.88(0.85) 45.00~66.02(61.29) 1.50~2.20(2.04) WR-3 15 3.1~12.9 5~35 -9.3~-4.6(-7.1) 161.7~316.6(229.7) 7.3~13.2(10.5) 0.77~0.97(0.91) 44.39~78.28(63.42) 1.48~2.89(2.11) WR-4 16 2.0~6.5 5~20 -10.7~-3.8(-7.3) 174.4~321.1(234.6) 6.2~14.7 (10.7) 0.84~0.98(0.91) 48.38~89.48(64.79) 1.61~2.88(2.16) WR-6 15 3.3~12.5 5~15 -11.7~-0.3(-3.8) 130.0~260.5(208.2) 0.5~15.7 (6.0) 0.84~0.98(0.90) 30.30~70.90(55.10) 1.01~2.36(1.84) WR-15 14 2.7~17.5 5~20 -3.6~-0.3(-1.2) 168.2~258.9(215.5) 0.5~5.9 (2.0) 0.79~0.92(0.86) 39.02~65.47(50.86) 1.32~2.18(1.70) WR-16 15 4.0~22.3 3~20 -11.9~-3.0(-7.7) 159.8~352.6(223.3) 5.0~15.9 (11.2) 0.78~1.01(0.92) 44.49~97.99(61.64) 1.48~3.27(2.05) WR-18 15 3.5~10.6 5~35 -5.2~-1.6(-3.7) 162.4~271.4(209.6) 2.7~8.1 (6.0) 0.86~0.93(0.90) 42.47~74.05(56.51) 1.42~2.47(1.88) WR-21 16 3.7~20.6 5~15 -5.4~-0.1(-3.2) 170.0~236.6(209.6) 0.2~8.4 (5.2) 0.82~0.96(0.89) 29.46~ 63.90(53.95) 0.98~2.13(1.80) WR-22 14 3.0~30.2 5~15 -6.9~-3.9(-5.1) 174.9~216.5(201.1) 6.3~10.4 (7.9) 0.89~0.96(0.92) 48.18~59.81(55.00) 1.61~1.99(1.83) WR-25 14 3.3~18.1 5~25 -9.3~-0.2(-3.4) 171.8~272.5(212.7) 0.4~13.2(5.3) 0.84~0.94(0.89) 32.89~75.22 (53.16) 1.10~2.51(1.77) WR-26 16 2.0~9.5 3~30 -8.4~-2.6(-5.1) 139.7~334.5(211.0) 4.3~12.2(8.0) 0.77~0.99(0.91) 38.39~92.44(59.90) 1.28~3.08(2.00) WR-37 16 2.4~13.5 3~15 -6.1~-0.2(-3.4) 136.4~211.9(168.5) 0.4~9.3(5.4) 0.89~0.97(0.94) 21.09~56.91(45.44) 0.70~1.90(1.51) WR-41 16 5.2~15.5 5~15 -5.5~-1.0(-3.7) 179.5~265.5(205.0) 1.7~8.5(6.0) 0.81~0.95(0.90) 46.99~70.29(54.98) 1.57~2.34(1.83) WR-42 15 3.2~13.4 5~15 -5.2~-2.0(-3.9) 134.0~256.7(205.8) 3.4~8.1(6.2) 0.86~0.97(0.90) 35.99~70.34(55.65) 1.20~2.34(1.86) WR-46 16 3.2~14.6 10~15 -8.7~-0.1(-4.3) 219.5~305.7(259.4) 0.2~12.5(6.8) 0.74~0.90(0.84) 35.84~84.55(67.99) 1.19~2.82(2.27) WR-47 15 2.7~9.7 10~30 -6.3~-0.3(-2.8) 178.2~371.7(240.3) 0.5~9.3(5.2) 0.68~0.91(0.85) 41.66~102.09(62.04) 1.39~3.40(2.07) 注:括号内为平均值. 表 2 乌日尼图钨钼矿床石英中流体包裹体群气相和液相成分(μg/g)
Table 2. Gas components and aqueous components of grouped fluid inclusions from quartz in the Wurinitu tungsten and molybdenum deposit
样号 WR-1 WR-4 WR-6 WR-25 WR-26 WR-37 样品名称 含矿石英脉 含矿石英脉 含矿石英脉 含矿石英脉 含矿石英脉 含矿石英脉 CH4 1.134 0.091 0.138 0.659 0.240 0.122 C2H2+C2H4 0.355 0.228 0.345 0.641 0.587 0.215 C2H6 微量 微量 0.010 0.072 0.027 微量 CO2 215.394 93.991 179.044 352.493 204.057 92.912 H2O 217.082 204.064 60.020 421.716 178.399 174.747 O2 8.623 9.626 19.379 9.512 12.011 8.343 N2 42.338 45.142 93.596 58.817 63.648 39.963 CO 15.688 11.242 48.108 93.460 70.792 13.137 CO2/H2O 0.406 0.189 1.221 0.342 0.468 0.218 CO2/N2 3.238 1.325 1.218 3.815 2.041 1.480 Li+ 0.038 0.076 0.022 0.047 0 0.035 Na+ 3.617 4.047 2.446 3.891 2.035 4.490 K+ 2.269 3.439 2.223 1.949 2.940 2.434 Mg2+ 0.025 0.028 0.043 0.031 0.029 0.021 Ca2+ 1.481 2.145 3.002 2.347 2.333 1.600 F- 0.454 0.263 0.289 0.671 0.166 0.372 Cl- 2.968 2.712 2.757 3.672 2.126 4.532 NO2- 0 0 0 0 0 0 Br- 0 0 0.087 0.156 0 0 NO3- 2.117 2.345 2.122 2.448 1.823 1.880 SO42- 10.334 8.621 6.971 9.442 7.319 9.078 (Na++K+)/(Ca2++Mg2+) 5.670 4.829 2.129 3.662 2.756 6.315 Mg2+/Ca2+ 0.028 0.022 0.024 0.022 0.020 0.022 Na+/K+ 2.711 2.001 1.871 3.395 1.177 3.137 Na+/Ca2+ 4.258 3.289 1.420 2.890 1.521 4.892 F-/Cl- 0.285 0.181 0.196 0.341 0.146 0.153 Cl-/SO42- 0.778 0.852 1.072 1.054 0.787 1.353 注:数据由中国地质科学院地质矿产资源研究所流体包裹体实验室分析,分析人杨丹. 表 3 乌日尼图钨钼矿床氢氧同位素测试结果
Table 3. Hydrogen and oxygen isotope data of the Wurinitu tungsten and molybdenum deposit
样号 WR-1 WR-3 WR-16 WR-18 WR-21 WR-25 WR-26 WR-37 WR-42 WR-47 产出位置 矿石 矿石 矿石 矿石 矿石 矿石 矿石 矿石 矿石 矿石 测试矿物 石英 石英 石英 石英 石英 石英 石英 石英 石英 石英 δ18O石英(%) 8.7 10.5 9.6 10.5 10.3 10.0 11.1 9.9 12.2 8.5 δD水(%) -99 -97 -105 -103 -85 -106 -108 -105 -87 -99 δ18O水(%) -1.91 -0.11 -1.01 -0.11 -0.31 -0.61 0.49 -0.71 1.59 -2.11 -
[1] Bruke, E.A.J., 2001. Raman micro-spectrometry of fluid inclusions. Lithos, 55(1-4): 139-158. doi: 10.1016/ S0024-4937(00)00043-8 [2] Chu, S.X., Zeng, Q.D., Liu, J.M., et al., 2010. Characteristics and its geological significance of fluid inclusions in Chehuhou porphyry Mo-Cu deposit, Xilamulun molybdenum metallogenic belt. Acta Petrologica Sinica, 26(8): 2465-2481(in Chinese with English abstract). http://www.researchgate.net/publication/279909568_Characteristics_and_its_geological_significance_of_fluid_inclusions_in_Chehugou_porphyry_Mo-Cu_deposit_Xilamulun_molybdenum_metallogenic_belt [3] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. Geophys. Res., 77(17): 3057-3067. doi: 10.1029/JB077i017p03057 [4] Du, Y.D., Yu, X.Q., Liu, J.J., et al., 2011. Characteristics of ore-forming fluids and sources of ore-forming materials in the Dongyuan W-Mo deposit, southern Anhui Province. Geology in China, 38(5): 1334-1346(in Chinese with English abstract). [5] Fan, H.R., Xie, Y.H., Zhai, M.G., et al., 2003. A three stage fluid flow model for Xiaoqinling lode gold metallogenesis in the He'nan and Shanxi Provinces, central China. Petrologica Sinica, 19(2): 260-266(in Chinese with English abstract). http://www.oalib.com/paper/1473605 [6] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol., 83: 197-202. doi: 10.2113/gsecongeo.83.1.197 [7] Liu, B., Duan, G.X., 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25wt%) and their applications. Acta Mineralogica Sinica, 7(4): 345-352(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KWXB198704010.htm [8] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid inclusion. Science Press, Bejing, 200-210(in Chinese). [9] Rui, Z.Y., Li, Y.Q., Wang, L.S., et al., 2003. Approach to ore-forming conditions in light of ore fluid inclusions. Mineral Deposits, 21(1): 13-23(in Chinese with English abstract). http://www.researchgate.net/publication/288907189_Approach_to_ore-forming_conditions_in_light_of_ore_fluid_inclusions [10] Shang, H.S., 2012. The discovery and consideration of the Wurinitu W-Mo deposit in Sonid Left Banner. Western Resources, 1: 21(in Chinese). [11] Shao, J.D., Tao, J.X., Li, S.W., et al., 2009. The new progress in ore prospecting within Daxing'anling mineralization belt, China. Geological Bulletin of China, 28(7): 955-962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200907017.htm [12] Shao, J.L., 1988. Prospecting mineralogy of gold deposit. China University of Geoscience Press, Wuhan, 38-45(in Chinese). [13] Shepherd, T.J., Rankin, A.H., Alderton, D.M.H., 1985. A practical guide to fluid inclusion studies. Chapman & Hall, London. [14] Tao, J.X., Zhong, R., Zhao, Y.M., et al., 2010. Geological characteristics and ore-prospecting criteria of the ulandler porphyry molybdenum deposit in Sonid Left Banner, Inner Mongolia. Acta Geoscientica Sinica, 31(3): 413-422(in Chinese with English abstract). [15] Wang, X.Y., Jia, W.G., Wang, X.Z., et al., 2010. Fluid inclusion in the Hulalin gold deposit, Inner Mongolia. Geology and Resources, 19(2): 138-143(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201002013.htm [16] Xiao, W., Wang, Y.T., Jiang, S.H., et al., 2010. Explanatory notes for the simplified geology and mineral resource map and typical geographical and topographic features of southern Mongolian and its neighboring areas. Acta Geoscientica Sinica, 31(3): 473-484(in Chinese with English abstract). http://www.oalib.com/paper/1559658 [17] Xu, J.H., Xie, Y.L., Zhang, J.H., et al., 2006. Sub-volcanic epithermal mineralization of Jiulongwan silver-polymetal deposit, eastern Daqingshan, Inner Mongolia, China: evidence from fluid inclusion. Acta Petrologica Sinica, 22(6): 1735-1743(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98200606030.aspx [18] Yamamoto, J., Kagi, H., Kaneoka, I., 2002. Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth and Planetary Science Letters, 198(3-4): 511-519. doi: 10.1016/S0012-821X(02)00528-9 [19] Zhang, Z.L., Huang, Z.L., Rao, B., et al., 2005. Study on the ore-forming fluid characteristics of Huize Pb-Zn ore deposits. Contributions to Geology and Mineral Resources Research, 20(2): 115-122(in Chinese with English abstract). [20] Zhu, Y.F., Zeng, Y.S., Jiang, N., 2001. Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountains, northern China. International Geology Review, 43(5): 457-473. doi:10.1080/ 00206810109465026 [21] 褚少雄, 曾庆栋, 刘建明, 等, 2010. 西拉沐伦钼矿带车户沟斑岩型钼-铜矿床成矿流体特征及其地质意义. 岩石学报, 26(8): 2465-2481. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008020.htm [22] 杜玉雕, 余心起, 刘家军, 等, 2011. 皖南东缘钨钼矿成矿流体特征和成矿物质来源. 中国地质, 38(5): 1334-1346. doi: 10.3969/j.issn.1000-3657.2011.05.020 [23] 范宏瑞, 谢奕汉, 翟明国, 等, 2003. 豫陕小秦岭脉状金矿床三期流体运移成矿作用. 岩石学报, 19(2) : 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200302006.htm [24] 刘斌, 段光贤, 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345-352. doi: 10.3321/j.issn:1000-4734.1987.04.010 [25] 卢焕章, 范洪瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 200-210. [26] 芮宗瑶, 李荫清, 王龙生, 等, 2003. 从流体包裹体研究探讨金属矿床成矿条件. 矿床地质, 21(1): 13-23. doi: 10.3969/j.issn.0258-7106.2003.01.002 [27] 尚恒胜, 2012. 苏尼特左旗乌日尼图钨钼矿床的发现及思考. 西部资源, (1): 21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201201036.htm [28] 邵积东, 陶继雄, 李四娃, 等, 2009. 大兴安岭成矿带找矿工作新进展. 地质通报, 28(7): 955-962. doi: 10.3969/j.issn.1671-2552.2009.07.015 [29] 邵洁涟, 1988. 金矿找矿矿物学. 武汉: 中国地质大学出版社, 38-45. [30] 陶继雄, 钟仁, 赵月明, 等, 2010. 内蒙古苏尼特左旗乌兰德勒钼(铜)矿床地质特征及找矿标志. 地球学报, 31(3): 413-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003017.htm [31] 王晓勇, 贾伟光, 王献忠, 等, 2010. 内蒙古额尔古纳市虎拉林金矿床成矿流体包裹体研究. 地质与资源, 19(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201002013.htm [32] 肖伟, 王义天, 江思宏, 等, 2010. 南蒙古及邻区地质矿产简图及地形地貌特点. 地球学报, 31(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003028.htm [33] 徐九华, 谢玉玲, 张巨华, 等, 2006. 大青山东段九龙湾银-多金属矿床的次生火山热液成因——流体包裹体证据. 岩石学报, 22(6): 1735-1743. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606030.htm [34] 张振亮, 黄智龙, 饶冰, 等, 2005. 会泽铅锌矿床成矿流体研究. 地质找矿论丛, 20(2): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200502008.htm