Mine Geological Modeling and Application Based on the Three-Dimensional Laser Scanner Technology
-
摘要: 激光扫描技术(light detection and ranging technology)作为一门新兴的测绘技术, 目前已应用于诸多领域, 然而对于海量测站数据的拼接、大地坐标的定位等方面还存在一些不足.针对这2个问题, 提出分部式拼接方法以解决大数据量难处理的问题, 并利用罗德里格矩阵算法, 编程实现对地物的绝对坐标定位, 完成矿山的地质建模, 是对矿山地质建模新方法的探讨.通过与已知坐标数据的对比, 表明该方法的误差在矿山建模的允许值范围内, 具有较好的适用性.并以内蒙古白音诺尔铅锌矿地质建模为例, 可为覆盖区矿产综合预测提供3D矿床模型及预测要素空间形态特征等方面的参考.Abstract: As a new mapping technology, light detection and ranging has been applied in many areas so far. However, for many aspects, such as the alignment of mass data, the location of geographic coordinates and so on, it still suffers some shortages. This paper, focusing on these two issues, puts forward the method of aligning by division parts to solve the problem of the large amounts of data, and to establish the geology modeling by using Rodrigo matrix algorithm to complete the absolute coordinates for the mine, which is a new method of the geological modeling. By comparison with the coordinate data, it indicates that the error of the method is within the allowed value range for mine modeling, with good applicability. Taking the modeling of Baiyinnuo'er Pb-Zn mine area for example, it can facilitate comprehensive mineral resources prediction for the coverage area, especially in perspectives of the 3D deposit modeling and prediction factor spatial characteristics.
-
图 2 坐标转换简单示意(据金涛等,2003)
Fig. 2. Sketch of coordinate transformation
表 1 标记点坐标系转换对比表
Table 1. Comparison of the coordinate transformation for the target
坐标系 公共点 x(m) y(m) z(m) 待转换坐标系 1 8.07 7.36 -2.02 2 12.60 -1.01 -0.09 3 31.13 11.01 -3.97 4 0.01 0.32 0.02 大地坐标实际值 1 4 924 182.128 40 411 323.45 1 061.246 2 4 924 179.535 40 411 332.36 1 063.063 3 4 924 201.057 40 411 336.90 1 058.897 4 4 924 175.492 40 411 318.38 1 062.206 大地坐标理论值 1 4 924 181.935 40 411 323.50 1 060.457 2 4 924 179.685 40 411 332.33 1 063.787 3 4 924 201.099 40 411 336.89 1 058.962 4 4 924 171.467 40 411 322.71 1 063.369 平均误差 ≤1.006 ≤1.100 ≤0.290 -
[1] Dong, X.J., Huang, R.Q., 2006. Application of 3D laser scanning technology to geologic survey of high and steep slope. Chinese Journal of Rock Mechanics and Engineering, 25(Suppl. 2): 3629-3635 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX2006S2045.htm [2] Fardin, N., Feng, Q., Stephansson, O., 2004. Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness. International Journal of Rock Mechanics and Mining Sciences, 41(2): 329-335. doi: 10.1016/S1365-1609(03)00111-4 [3] Feng, Q., Fradin, N., Jing, L., et al., 2003. A new method for in-situ non-contact roughness measurement of large rock fracture surface. Rock Mechanics and Rock Engineering, 36(1): 3-25. doi: 10.1007/s00603-002-0033-1 [4] Fletcher, F.K., Kershaw, D.J., 2002. Performance analysis of unbiased and classical measurement conversion technique. IEEE Trans. on AES, 38(4): 1441-1444. doi: 10.1109/TAES.2002.1145770 [5] Han, X.D., Tao, H.X., Dong, J., 2002. Nonlinear coordination conversion model for spatial right-angle coordination system. Geotechnical Investigation & Surveying, 175(5): 27-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200205008.htm [6] He, B.S., Ding, L.Q., Sun, P., 2007. The application of 3D laser scanning technology in rock joint sets identification. Journal of China Institute of Water Resources and Hydropower Research, 5(1): 43-48 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGSX200701007.htm [7] Jin, T., Tong, S.G., et al., 2003. Reverse engineering technology. China Machine Press, Beijing (in Chinese). [8] Li, J., Hu, S.Q., Deng, Z.B., 2012. Application of open-pit mine slope mapping with 3D laser scanning technique based on comprehensive improved ICP algorithm. Coal Geology & Exploration, 40(1): 51-54 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=MDKT201201013&dbcode=CJFD&year=2012&dflag=pdfdown [9] Liu, C., Chen, H.Y., Wu, H.B., 2010. Three-dimensional laser remote sensing data processing and feature extraction. Science Press, Beijing (in Chinese). [10] Liu, C., Yang, W., 2006. Collection and modeling for the three dimensional laser scanning data. Journal of Geotechnical Investigation & Surveying, (4): 49-53 (in Chinese with English abstract). [11] Luo, D.B., Gao, M., Wang, P.J., 2005. Digital measurement and point clouds data processing of reverse engineering. Machinery Design & Manufacture, (9): 56-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSYZ200509029.htm [12] Ouyang, J.H., 2006. Techniques of close-range 3D laser seanning. Infrared, 27(3): 1-7 (in Chinese with English abstract). [13] Sloer, T., Han, J.Y., Weston, N.D., 2012. Alternative transformation from cartesian to geodetic coordinates by least squares for GPS georeferencing application. Computer & Geosciences, 42: 100-109. doi: 10.1016/j.cageo.2011.10.026 [14] Wang, X., 2004. Reverse engineering technology and application. Chemistry Industry Press, Beijing, 41-44 (in Chinese). [15] Yang, L., Leng, Y.B., Zhang, Q.M., et al., 2008. Application of three-dimensional laser scanning data acquisition technology to model Yellow-River digital river bed test. Journal of China Three Gorges Univ. (Natural Sciences), 30(6): 48-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHYC200806013.htm [16] Yao, J.L., Liu, K.L., Zhang, L., et al., 2011. Method for metal mine surveying based on 3D laser scanning technique. Metal Mine, (7): 114-117 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS201107034.htm [17] Yuan, Y.L., Jiang, L.X., Zhang, K.S., et al., 2009. A totalizing technique of 3D laser scanner. Journal of Geomatics Science and Technology, 25(3): 232-234 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JFJC200903021.htm [18] Zeng, Y.X., Shi, G.Y., 2002.3D laser scanning and its applications in engineering surveying. Journal of National Cheng Kung University, 3 (in Chinese). http://www.scientific.net/AMR.671-674.2111 [19] Zhang, J., Liu, J., Liu, X.M., 1998. Three-dimensional absolute orientation model using the Roderick matrix. Infrared and Laser Engineering, 27(4): 30-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWYJ804.007.htm [20] Zhang, K., 2008. Research on spatial registration for three-dimensional laser scanning data (Dissertation). Nanjing Normal University, Nanjing (in Chinese with English abstract). [21] Zhang, K., Zhang, D.J., Sheng, Y.H., et al., 2008. Research on two methods of three dimensional coordinate transformation and their comparison. Mathematics in Practice and Theory, 38(23): 121-128 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_mathematics-practice-theory_thesis/0201271993878.html [22] Zhang, Y.Z., Hu, G.Y., 2004. Capture of urban detailed special 3D data by laser scanning system. Journal of Qing Hua University, (2): 1-7 (in Chinese with English abstract). [23] Zhao, Y.P., Gao, M., Luo, D.B., 2005. Data management based on Polyworks in reverse engineering. Computer Application Technology, (10): 38-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MECH200510016.htm [24] 董秀军, 黄润秋, 2006. 三维激光扫描技术在高陡边坡地质调查中的应用. 岩石力学与工程学报, 25(增刊2): 3629-3635. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2045.htm [25] 韩晓东, 陶华学, 董军, 2002. 空间直角坐标系非线性坐标转换模型. 工程勘察, 175(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200205008.htm [26] 何秉顺, 丁留谦, 孙平, 2007. 三维激光扫描系统在岩体结构面识别中的应用. 中国水利水电科学研究院学报, 5(1): 43-48. doi: 10.3969/j.issn.1672-3031.2007.01.008 [27] 金涛, 童水光, 等, 2003. 逆向工程技术. 北京: 机械工业出版社. [28] 李健, 胡书桥, 邓增兵, 2012. 基于综合改进ICP算法的三维激光扫描技术在露天矿边坡测绘中的应用. 煤田地质与勘探, 40(1): 51-54. doi: 10.3969/j.issn.1001-1986.2012.01.012 [29] 刘春, 陈华云, 吴航彬, 2010. 激光三维遥感的数据分析与特征提取. 北京: 科学出版社. [30] 刘春, 杨伟, 2006. 三维激光扫描对构筑物的采集和空间建模. 工程勘察, (4): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200604013.htm [31] 罗大兵, 高明, 王培俊, 2005. 逆向工程中数字化测量与点云数据处理. 机械设计与制造, (9): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200509029.htm [32] 欧阳俊华, 2006. 近距离三维激光扫描技术. 红外, 27(3): 1-7. doi: 10.3969/j.issn.1672-8785.2006.03.001 [33] 王霄, 2004. 逆向工程技术及其应用. 北京: 化学工业出版社, 41-44. [34] 杨磊, 冷元宝, 张清明, 等, 2008. 基于激光三维扫描的数据采集技术在模型黄河数字化河床试验中的应用. 三峡大学学报(自然科学版), 30(6): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200806013.htm [35] 姚吉利, 刘科利, 张磊, 等, 2011. 基于3D激光扫描的金属矿测量方法研究. 金属矿山, (7): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201107034.htm [36] 原玉磊, 蒋理兴, 张珂殊, 等, 2009.3维激光扫描仪的全站化实现方法. 测绘科学技术学报, 26(3): 232-234. doi: 10.3969/j.issn.1673-6338.2009.03.020 [37] 曾义星, 史关元, 2002. 三维镭射扫描技术及其在工程测量上之应用. 台湾成功大学学报, 3. [38] 张钧, 柳健, 刘小茂, 1998. 利用罗德里格矩阵确定三维表面重建中的绝对定向模型. 红外与激光工程, 27(4): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ804.007.htm [39] 张凯, 2008. 三维激光扫描数据的空间配准研究(硕士学位论文), 南京: 南京师范大学. [40] 张卡, 张道俊, 盛业华, 等, 2008. 三维坐标转换的两种方法及其比较研究. 数学的实践与认识, 38(23): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200823021.htm [41] 张远智, 胡广洋, 2004. 用激光扫描获取城市空间精细三维数据. 清华大学学报, (2): 1-7. [42] 赵艳平, 高明, 罗大兵, 2005. 基于PolyWorks的逆向工程数据处理. 计算机应用技术, (10): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200510016.htm