Geological Process-Based Mineral Resource Quantitative Prediction and Assessment for Makeng Type Iron Polymetallic Deposits in Fujian
-
摘要: 矿床是地质过程的产物之一, 深入分析控制矿床形成和保存的关键地质过程是矿产资源定量预测与评价的基础.闽西南马坑式铁多金属矿为矽卡岩型矿床, 燕山期的岩浆活动提供了热源、流体来源及部分的铁质来源; 热液沿着北东向断裂向上运移, 在岩体与石炭-二叠纪碳酸盐岩地层的接触面及石炭-二叠纪地层内部发生了热液交代作用, 形成了矽卡岩化; 铁主要来源于石炭-二叠纪碳酸盐岩建造, 后期燕山期岩浆的侵入, 使得铁进一步富集; 并在石炭-二叠纪地层中沉淀成矿.基于上述关键成矿过程, 从"源"(热源、物质来源和流体来源)、"运"(流体通道)、"盖"(圈闭)、"储"(矿质沉淀场所)和"存"(矿床的后期保存条件)等方面提取了地质证据, 利用模糊逻辑综合地质证据得到了找矿有利度图.结果显示所圈定的预测远景区与已知铁多金属矿床在空间上具有很强的相关性, 可作为进一步工作部署的依据.基于地质过程的矿产资源定量预测与评价方法, 决定矿床能否形成的关键地质过程为评价依据, 可为闽西南进一步找寻马坑式铁多金属矿提供新的找矿思路和参考依据.Abstract: Study of geological processes including: (1) establishment of energy gradients to drive the system, (2) generation of hydrothermal fluids, (3)extraction of metals and chemical ligands for metal complexation from suitable sources, (4) transportation of metals from sources regions to trap zones, (5)deposition of metals triggered by chemical and physical processes that alter the make-up of melts or fluids migrating through trap zones, and (6) preservation of mineral deposits through time is the basis for mineral resource quantitative prediction and assessment (MRQPA) since the forming and preservation of mineral deposits is a spatial-temporal function of geological processes. In this study, geological process-based mineral resource quantitative prediction and assessment for Makeng type iron polymetallic deposits in Fujian Province is implemented. The focuses are to study the critical geological processes and evidences that these processes have occurred, and to evaluate the probability of occurrences of the critical geological processes. This study offers a new prospective for mineral resource exploration, and provides a new strategy for further Makeng type iron polymetallic mineral exploration in Fujian province.
-
图 3 矽卡岩型矿床模型(据福建省地质调查研究院,2010修改)
1.童子岩组细碎屑岩;2.文笔山组泥质粉砂岩;3.经畲组-栖霞组灰岩(大理岩);4.林地组砂砾岩;5.中下石炭统片岩(变质粉砂岩);6.楼子坝组石英云母片岩;7.中酸性火山碎屑岩;8.安山玄武岩;9.燕山期花岗岩;10.燕山期花岗闪长岩;11.辉绿岩/花岗斑岩;12.断层及破碎带;13.矽卡岩;14.原生铁矿、风化铁矿
Fig. 3. Skarn-type Fe mineral deposit model
-
[1] Agterberg, F.P., 1989. Computer programs for mineral exploration. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76 [2] Agterberg, F.P., 2011. A modified weights-of-evidence method for regional mineral resource estimation. Natural Resources Research, 20(2): 95-101. doi: 10.1007/s11053-011-9138-0 [3] Bonham-Carter, G.F., 1994. Geographic information systems for geoscientists: modelling with GIS. Pergamon, Ontario, 398. http://www.sciencedirect.com/science/article/pii/B9780080418674500126 [4] Cargill, S.M., Clark, A.L., 1978. Report on the activity of IGCP Project 98. Mathematical Geology, 10(5): 411-417. doi: 10.1007/BF02461973 [5] Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier Science, Amsterdam. [6] Chen, G.Y., 1978. Genetic and Prospecting Mineralogy. Chongqing Publishing House, Chongqing (in Chinese). [7] Chen, S.R., Xie, J.H., Xu, C.N., et al., 1982. Discussion of the relationship between volcanic rock and the origin of iron in Makeng deposit. Geological Science and Technology Information, (S1): 69-72 (in Chinese with English abstract). [8] Chen, Y.S., 2002. New knowledge of the information cause of ore deposit during the exploitation process of Makeng iron mine. Metal Mine, 11: 50-59 (in Chinese with English abstract). [9] Chen, Y.S., 2010. New understanding of ore control structure feature of Fujian Makeng iron mine. Metal Mine, 2: 96-99, 144 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=JSKS201002024&dbcode=CJFD&year=2010&dflag=pdfdown [10] Cheng, Q., 2012. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes Geophysics, 19(1): 57-68. doi: 10.5194/npg-19-57-2012 [11] Cheng, Q.M., Agterberg, F.P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649 [12] Dupuis, C., Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita, 46(4): 319-335. doi: 10.1007/s00126-011-0334-y [13] Fujian Bureau of Geology and Mineral Resources, 1985. Regional geology of Fujian. Geological Press, Beijing (in Chinese). [14] Geological Survey Institute of Fujian, 2010. The report of iron potential evaluation, 148 (in Chinese). [15] Han, F., Ge, C.H., 1983a. Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 2: 60-87 (in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300008010.htm [16] Han, F., Ge, C.H., 1983b. Makeng iron deposit: a submarine volcanic hydrothermal sedimentary deposit. Science in China (Ser. B), 5: 438-455(in Chinese). [17] Jiang, Y.F., 2007. Discussion the genesis of the middle section of Makeng iron ore deposit. Express Information of Mining Industry, 7: 69-77(in Chinese). [18] Knox-Robinson, C.M., Groves, D.I., 1997. Gold prospectivity mapping using a geographic information system (GIS) with examples from the Yilgarn Block of Western Australia. Chron. Rech. Min. , 529: 127-138. [19] Kreuzer, O.P., Etheridge, M.A., Guj, P., et al., 2008. Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103(4): 829-850. doi: 10.2113/gsecongeo.103.4.829 [20] Lin, D.Y., 2011. Research on Late Paleozoic-Triassic tectonic evolution and metallogenetic regularities of iron-polymetalic deposits in the southwestern Fujian Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [21] Lord, D., Etheridge, M., Willson, M., et al., 2001. Measuring exploration success: an alternative to the discovery-cost-per-ounce method of quantifying exploration effectiveness. SEG Newsletter, 45: 1-16. http://www.mendeley.com/research/measuring-exploration-success-alternative-discoverycostperounce-method-quantifying-exploration-effec/ [22] Magoon, L.B., Dow, W.G., 1994. The petroleum system. In: Magoon, L.B., Dow, W.G., eds., The petroleum system: from source to trap. American Association of Petroleum Geologists Memoir, 60: 3-24. [23] Mao, J.R., Chen, R., Li, J.Y., et al., 2006. Geochronology and geochemical characteristics of Late Mesozoic granotic rocks from southwestern Fujian and their tectonic evolution. Acta Petrologica Sinica, 22(6): 1723-1734 (in Chinese with English abstract). [24] McCuaig, T.C., Beresford, S., Hronsky, J., 2010. Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3): 128-138. doi: 10.1016/j.oregeorev.2010.05.008 [25] Porwal, A.K., Kreuzer, O.P., 2010. Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation. Ore Geology Reviews, 38(3): 121-127. doi: 10.1016/j.oregeorev.2010.06.002 [26] Tao, J.H., 1987. An overthrust tectonic in southwest Fujian and its mechanism of formation. Geology of Fujian, 6(4): 249-270 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ198704000.htm [27] Wang, D.H., Chen, Z.H., Chen, Y.C., et al., 2010. New data of the rock-forming and ore-formin gchronology for China's important mineral resources areas. Acta Geologica Sinica, 84(7): 1030-1040 (in Chinese with English abstract). [28] Wang, G.S., Ma, W.P., Zhu, W.P., 2009. The Late Paleozoic-Early Triassic sedimentary characteristics and its tectonic significance in southwestern Fujian, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(1): 87-91 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200901016.htm [29] Wu, G.G., Zhang, D., Chen, B.L., et al., 2000. Transformation of Mesozoic tectonic domain and its relation to mineralization in southeastern China: an evidence of southwestern Fujian Province. Earth Science—Journal of China University of Geosciences, 25(4): 390- 396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200004011.htm [30] Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In: Hallenstein, P.C., ed., Australian mining looks north-the challenges and choices. Australian Institute of Mining and Metallurgy Publication Series, Darwin, 5: 109-115. [31] Zhang, C.S., Su, H.M., Yu, M., et al., 2012. Zircon U-Pb age and Nd-Sr-Pb isotopic characteristics of Dayang-Juzhou granite in Longyan, Fujian Province and its geological significance. Acta Petrologica Sinica, 28(1): 225-242 (in Chinese with English abstract). [32] Zhao, P.D., Chen, Y.Q., 2011. Theories and approaches on scientific targeting at mineral deposits. Earth Science—Journal of China University of Geosciences, 36(2): 181-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201102004.htm [33] Zhao, Y.M., Tan, H.J., Xu, Z.N., et al., 1983. The calcic-skarn iron ore deposit of Makeng type in southwestern Fujian. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1: 1-141 (in Chinese with English abstract). http://www.researchgate.net/publication/291303483_The_calcic-skarn_iron_ore_deposit_of_making_type_in_southwestern_Fujian [34] 陈光远, 1978. 成因矿物学与找矿矿物学. 重庆: 重庆出版社. [35] 陈述荣, 谢家亨, 许超南, 等, 1982. 马坑铁矿区火山岩与铁矿原始铁质来源关系的初步探讨. 地质科技情报, (S1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1982S1026.htm [36] 陈跃升, 2002. 马坑铁矿开发过程中对矿床成因的新认识. 金属矿山, 11: 50-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200211019.htm [37] 陈跃升, 2010. 对福建马坑铁矿床控矿构造特征的新认识. 金属矿山, 2: 96-99, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201002024.htm [38] 福建省地质矿产局, 1985. 福建省区域地质志. 北京: 地质出版社. [39] 福建省地质调查研究院, 2010. 福建省铁矿资源潜力评价成果报告, 148. [40] 韩发, 葛朝华, 1983a. 福建马坑铁矿床海底火山热液-沉积成因的地质地球化学特征. 中国地质科学院矿床地质研究所所刊, 2: 60-87. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300017143.htm [41] 韩发, 葛朝华, 1983b. 马坑铁矿——一个海相火山热液-沉积型矿床. 中国科学(B辑), 5: 438-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198305006.htm [42] 姜益丰, 2007. 马坑铁矿中矿段矿床成因浅析. 矿业快报, 7: 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200707025.htm [43] 林东燕, 2011. 闽西南地区晚古生代—三叠纪构造演化与铁多金属矿成矿规律研究(博士学位论文). 北京: 中国地质大学. [44] 毛建仁, 陈荣, 李寄嵎, 等, 2006. 闽西南地区晚中生代花岗质岩石的同位素年代学、地球化学及其构造演化. 岩石学报, 22(6): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606029.htm [45] 陶建华, 1987. 闽西南地区东部逆冲推覆构造及其形成机制. 福建地质, 6(4), 249-270. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ198704000.htm [46] 王登红, 陈郑辉, 陈毓川, 等, 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007009.htm [47] 王果胜, 马文璞, 朱卫平, 2009. 闽西南晚古生代—早三叠世沉积特征及其大地构造意义. 成都理工大学学报(自然科学版), 36(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200901016.htm [48] 吴淦国, 张达, 陈柏林, 等, 2000. 中国东南大陆中生代构造域的转换及其与成矿的关系——以闽西南地区为例. 地球科学——中国地质大学学报, 25(4): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004011.htm [49] 张承帅, 苏慧敏, 于淼, 等, 2012. 福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义. 岩石学报, 28(1): 225-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201019.htm [50] 赵鹏大, 陈永清, 2011. 科学选靶的理论与方法. 地球科学——中国地质大学学报, 36(2): 181-188. [51] 赵一鸣, 谭惠静, 许振南, 等, 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊, 1: 1-141. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300007002.htm