• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二维混合场的各向异性尺度不变性量化方法及其应用

    曹黎 成秋明

    曹黎, 成秋明, 2012. 二维混合场的各向异性尺度不变性量化方法及其应用. 地球科学, 37(6): 1169-1174. doi: 10.3799/dqkx.2012.124
    引用本文: 曹黎, 成秋明, 2012. 二维混合场的各向异性尺度不变性量化方法及其应用. 地球科学, 37(6): 1169-1174. doi: 10.3799/dqkx.2012.124
    CAO Li, CHENG Qiu-ming, 2012. Anisotropic Scale Invariance Quantification Method for 2D Mixing Fields and Its Applications. Earth Science, 37(6): 1169-1174. doi: 10.3799/dqkx.2012.124
    Citation: CAO Li, CHENG Qiu-ming, 2012. Anisotropic Scale Invariance Quantification Method for 2D Mixing Fields and Its Applications. Earth Science, 37(6): 1169-1174. doi: 10.3799/dqkx.2012.124

    二维混合场的各向异性尺度不变性量化方法及其应用

    doi: 10.3799/dqkx.2012.124
    基金项目: 

    “863”计划 2009AA06Z110

    NSERC项目 ERC-OGP0183993

    详细信息
      作者简介:

      曹黎(1981-),男,硕士,中国地质调查局总工程师室工程师.主要从事地质调查信息化建设、质量监管、标准制定等工作. E-mail: cli@mail.cgs.gov.cn

    • 中图分类号: P627;P628

    Anisotropic Scale Invariance Quantification Method for 2D Mixing Fields and Its Applications

    • 摘要: 由不同尺度过程或作用叠加而形成的混合场在地学领域很常见,研究如何量化这些场的尺度不变性以及如何刻画其各项异性特征具有重要意义.介绍了近期研发的图像各向异性尺度不变性模拟和分解方法,并将其应用于遥感图像处理中.该方法是将各向异性尺度不变性模拟(SIG)和分形滤波(S-A)方法融合的,对于任意二维场,先用S-A模型判断其是否为混合场.如果是混合场,用S-A模型对其进行模式分解,然后再运用SIG模型量化分解后的各组分的各向异性尺度不变性,并描述其具体变换特征.基于一幅混合遥感影像的应用实例表明,该方法能够有效地量化二维混合场的各向异性尺度不变性.此外,混合场只有在正确分解成不同尺度的组分之后才能得到合理的利用.

       

    • 图  1  取不同cfe值时球族的形状

      Fig.  1.  Shape of balls with different c, f, e values

      图  2  遥感影像(a)和能谱密度图(b)

      Fig.  2.  The original remote sensing image (a) and spectral energy density image (b)

      图  3  能谱密度大于P的面积与P的log-log图

      Fig.  3.  Log-log plot of area of the set with spectral energy density above P (A(> P)) against P

      图  4  根据图 3中的2个拐点构建的3个滤波器

      Fig.  4.  The three filters constructed according to the breaks in the S-A plot

      图  5  模式分解后空间域对应的3个组分

      Fig.  5.  The decomposed 3 components in the space domain obtained by applying the three filters respectively

      图  6  研究中频组分时在能谱密度平面中截取的研究区域和运用SIG模型生成的相应球族

      Fig.  6.  The family of balls generated by the SIG model for the middle-scale component

      图  7  e=1.889,c=0.290,f=-0.548生成的球族

      Fig.  7.  The family of balls generated with e=1.889, c=0.290 and f=-0.548

    • [1] Cao, L., Cheng, Q.M., 2012. Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China. Journal of Geochemical Exploration(in press). http://www.sciencedirect.com/science/article/pii/S0375674212001458
      [2] Cheng, Q.M., Li, Q.M., 2002. A fractal concentration-area method for assigning a color palette for image representation. Computers and Geosciences, 28(4): 567-575. doi: 10.1016/S0098-3004(01)00060-7
      [3] Cheng, Q.M., Jing, L.H., Panahi, A., 2006. Principal component analysis with optimum order sample correlation coefficient for image enhancement. International Journal of Remote Sensing, 27(16): 3387-3401. doi: 10.1080/01431160600606882
      [4] Cheng, Q.M., 2004. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36(3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
      [5] Cheng, Q.M., Xu, Y.G., Grunsky, E., 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation. Proceedings of the International Association of Mathematical Geology Meeting, Trondheim, Norway I, 87-92.
      [6] Fox, C.G., Hayes, D.E., 1985. Quantitative methods for analyzing the roughness of the seafloor. Rev. Geophys. , 23(1): 1-48. doi: 10.1029/RG023i001p00001
      [7] Lewis, G.M., 1993. The scale invariant generator technique and scaling anisotropy in geophysics (Dissertation). McGill University, Montreal, Quebec.
      [8] Lewis, G.M., Lovejoy, S., Schertzer, D., et al., 1999. The scale invariant generator technique for quantifying anisotropic scale invariance. Comp. Geosci. , 25(9): 963-978. doi: 10.1016/S0098-3004(99)00061-8
      [9] Lovejoy, S., Schertzer, D., 1985. Generalized scale-invariance in the atmosphere and fractal models of rain. Water Res. , 21(8): 1233-250. doi: 10.1029/WR021i008p01233
      [10] Lovejoy, S., Schertzer, D., Tsonis, A.A., 1987. Functional box-counting and multiple elliptic dimensions in rain. Science, 235(4792): 1036-1038. doi: 10.1126/science.235.4792.1036
      [11] Pfug, K., 1991. Generalized scale-invariance, differential rotation and cloud texture (Dissertation). McGill University, Montreal, Quebec.
      [12] Pflug, K., Lovejoy, S., Schertzer, D., 1991. Generalized scale-invariance, differential rotation and cloud texture. Nonlinear Dynamics of Structures: 71-80.
      [13] Pflug, K., Lovejoy, S., Schertzer, D., 1993. Generalized scale invariance, differential rotation and cloud texture. Journal of the Atmospheric Sciences, 50: 538-553. doi: 10.1175/1520-0469(1993)050<0538:DRACTA>2.0.CO;2
      [14] Schertzer, D., Lovejoy, S., 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. Journal of Geophysical Research, 92(D8): 9693-9714. doi: 10.1029/JD092iD08p09693
      [15] Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics. Kluwer Academic, Dordrecht, The Netherlands, 318.
    • 加载中
    图(7)
    计量
    • 文章访问数:  208
    • HTML全文浏览量:  110
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-07-19
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-06-15

    目录

      /

      返回文章
      返回