Application of Hydrocarbons in Concealed Tungsten Ore Prediction in Weijia, Nanling Area
-
摘要: 魏家钨矿位于湖南道县祥霖铺镇,产出于铜山岭岩体北部附近的祥霖铺斑岩群,是新一轮矿产远景调查时利用综合信息找矿发现的大型矽卡岩型钨矿.由于矿体埋藏深度近500 m,矿体上盘为灰岩盖层,表层被几十厘米至几百厘米的土壤覆盖,常规指示元素难以指示深部矿体.研究表明,在成矿过程中烃类组分参与了成矿元素的迁移、富集,因此选取该区进行烃气测量实验,验证其对覆盖区深部隐伏钨矿的指示效果.研究了见矿钻孔ZK801的46个岩心样的酸解烃和矿体上方3条剖面的土壤热释烃含量特征,结果表明在斑岩体、矿体、围岩中除甲烷外烃类组分含量依次降低,甲烷、烯烃和重烷比例明显不同;标准化后矿体配分曲线与斑岩体和围岩均具有相似性;土壤剖面中热释烃在矿体上方呈现双峰分布,与传统指示元素相比对深部矿体有更好的指示效果;研究区烃组分地球化学图显示矿体上方烃类组分呈现低值带,矿体周围为明显的异常区.因此烃气测量在覆盖区对深部矿体有较好的指示意义.Abstract: Weijia tungsten ore is located at Xiang Linpu Town, Hunan Province. It is in the Xiang Linpu porphyry groups near the Tong Shanling porphyry. The large skarn type deposit was detected using comprehensive exploration method during the recent exploration activities in China. Being buried deeply in 500 m and covered by limestone and thick soil in the surface, it has hardly been indicated by traditional pathfinder elements. It is proved that hydrocarbons promoted the transport and enrichment of elements in the ore forming, so Weijia tungsten ore is taken as a case to study the effect of hydrocarbons to the concealed deposits in coverage area. Acidolysis hydrocarbon of 46 rock samples in ZK801 and heat release hydrocarbon of 3 soil profiles were analyzed. The results show that the contents of hydrocarbons decrease from porphyry, ore body to wall rock, and the rates of methane, olefins and heavy alkane are different in porphyry, ore body and wall rock. The standard curves shapes of ore are similar to those of the porphyry and wall rock. The soil heat release hydrocarbons show bimodal distribution and low value above the ore body. This study proves that the hydrocarbons are more useful to indicate the concealed mine than the traditional pathfinder elements.
-
Key words:
- coverage area /
- concealed tungsten ore /
- hydrocarbon /
- geochemisty /
- ore prospecting /
- ore deposits.
-
图 3 ZK801酸解烃类组分垂向分布(修改自李福顺等,2012)
1.钻孔;2.锡矿山组;3.长龙界组;4.棋子桥组上段;5.棋子桥组中段;6.棋子桥组下段;7.钨矿体;8.铜锌矿脉;9.花岗斑岩
Fig. 3. The vertical distribution of acidolysis hydrocarbon in ZK801
图 8 研究区烃类组分地球化学异常图(组分含量单位:μL/kg,采样位置可参考图 2)
Fig. 8. The geochemical anomaly map of hydrocarbons in the study area
表 1 ZK801钻孔酸解烃统计表(未标准化数据单位为μL/kg,W:%)
Table 1. The statistics of acidolysis hydrocarbons in ZK801
甲烷 乙烷 乙烯 丙烷 丙烯 异丁烷 正丁烷 异戊烷 正戊烷 甲烷/(C2-C5) 甲烷/烯烃 异丁烷/正丁烷 W 未
标
准
化围岩 161.84 3.78 1.82 1.52 1.82 0.18 0.45 0.17 0.64 0.96 44.41 0.40 0.04 上部蚀变围岩 2 042.90 2.87 1.25 1.23 1.21 0.41 0.55 0.56 0.87 228.38 832.98 0.75 0.03 上部矽卡岩 424.95 3.38 1.74 1.27 1.53 0.16 0.44 0.16 0.39 46.86 129.87 0.37 0.18 花岗斑岩 956.52 109.56 92.09 66.24 74.62 7.93 22.19 3.95 6.24 2.50 5.74 0.36 0.16 下部矽卡岩 501.58 6.07 3.56 2.66 3.07 0.33 0.91 0.28 0.62 28.66 75.71 0.36 0.16 铜锌矿体 434.05 10.03 7.42 5.48 6.61 0.95 1.99 0.55 0.79 12.84 30.94 0.48 标
准
化围岩 0.94 0.24 0.05 0.16 0.07 0.18 0.11 7.35 1.58 上部蚀变围岩 11.91 0.19 0.04 0.13 0.05 0.41 0.14 138.20 2.92 上部矽卡岩 2.48 0.22 0.05 0.13 0.06 0.16 0.11 21.72 1.46 花岗斑岩 5.58 7.10 2.74 6.87 3.04 7.93 5.66 0.97 1.40 下部矽卡岩 2.92 0.39 0.11 0.28 0.13 0.33 0.23 12.68 1.42 铜锌矿体 2.53 0.65 0.22 0.57 0.27 0.95 0.51 5.17 1.87 云南鲁甸峨眉山玄武岩(徐庆鸿等,2007) 171.50 15.44 33.66 9.65 24.54 1.00 3.92 表 2 土壤热释烃参数统计表(甲烷:μL/kg,其余为lg μL/kg)
Table 2. The statistic parameters of heat release hydrocarbons in soil
甲烷 乙烷 乙烯 丙烷 丙烯 异丁烷 正丁烷 异戊烷 正戊烷 min 0.64 -1.70 -0.92 -1.52 -1.40 -1.70 -1.52 -2.00 -1.70 max 16.40 0.14 1.32 1.26 1.38 2.39 0.99 2.10 0.83 C 5.75 -0.66 0.53 -0.01 0.36 0.19 -0.44 -0.01 -0.44 S 2.65 0.28 0.29 0.37 0.38 0.83 0.38 0.75 0.39 C-0.5S 4.43 -0.80 0.38 -0.19 0.17 -0.23 -0.63 -0.39 -0.64 C-S 3.10 -0.94 0.24 -0.38 -0.02 -0.64 -0.82 -0.77 -0.83 C-2S 0.46 -1.22 -0.05 -0.74 -0.40 -1.47 -1.20 -1.52 -1.22 C+0.5S 7.08 -0.52 0.67 0.18 0.55 0.60 -0.25 0.36 -0.25 C+2S 11.05 -0.10 1.11 0.73 1.12 1.84 0.32 1.49 0.33 C+S 8.40 -0.38 0.82 0.36 0.74 1.02 -0.06 0.74 -0.06 Cv 0.46 -0.43 0.55 -45.28 1.05 4.40 -0.87 -50.44 -0.87 注:max.最大值;min.最小值;C.均值;S.均方差;Cv.变异系数. -
[1] Chen, J.P., Chen, Y., Zhu, P.F., et al., 2011. Digital ore deposit model and its application case study of the prognosis of the Koktokay No. 3 pegmatite dike concealed rare metal deposit in Altay area of Xinjiang. Geological Bulletin of China, 30(5): 630-641(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284268.html [2] Chen, Y.R., Jia, G.X., Dai, T.G., 2002. The role of organic material in metallic mineralization and its application in metal exploration. Geology in China, 29(3): 257-262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203003.htm [3] Cheng, Q.M., Zhao, P.D., Zhang, S.Y., et al., 2009. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: information integration and delineation of mineral exploration targets. Earth Science—Journal of China University of Geosciences, 34(2): 243-252 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.022 [4] Cohen, D.R., Kelley, D.L., Anand, R., et al., 2010. Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration Environment Analysis, 10(1): 3-16. doi: 10.1144/1467-7873/09-215 [5] Ferguson, J., 1987. A possible role for light-hydrocarbons in Pb/Zn mineral exploration. Mineralogical Magazine, 51(362): 527-533. doi: 10.1180/minmag.1987.051.362.07 [6] Jiang, Y.J., Wei, J.H., Zhou, J.R., et al., 2010. The application of new geochemical exploration methods to mineral exploration and its geological effect. Geophysical and Geochemical Exploration, 34(2): 134-138(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201002003.htm [7] Li, F.S., Kang, R.H., Hu, X.Y., et al., 2012. Geological characteristics and ore-search prospect of the Weijia tungsten deposit in Nanling region. Geology in China, 39(2): 445-457(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=41705650 [8] Li, S.Y., Zheng, K.L., Xu, F.F., 1990. A rapid analytical method for trace amounts of light hydrocarbon gases and its application to geochemical prospecting for metallic deposits. Geophysical and Geochemical Exploration, 14(4): 303-311(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199004008.htm [9] Liu, Y., Deng, J., Sun, D.S., et al., 2007. Morphology and gensis typomorphism of minerals in W-Sn-Be deposit of Huya, Sichuan. Earth Science—Journal of China University of Geosciences, 32(1): 75-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701010.htm [10] Sun, J., Chen, Y.L., Li, D.P., 2011. New advances in geochemical exploration of concealed deposits. Advances in Earth Science, 26(8): 822-836 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201108004.htm [11] Wang, Y.H., Gong, M., Gong, P., et al., 2010. Experiment of soil light hydrocarbon prospecting in Chengmenshan copper-polymetallic deposit, Jiujiang, Jiangxi, China. Geological Bulletin of China, 29(7): 1056-1061(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201007014.htm [12] Xie, T.Y., Chen, Y.R., Zhang, J., et al., 2010. Application of hydrocarbon measurement to evaluation and prediction of mineralization in the Wulaga gold deposit of Heilongjiang Province. Geology and Exploration, 46(3): 506-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201003018.htm [13] Xu, Q.H., Chen, Y.R., Mao, J.W., et al., 2005. Application for hydrocarbon in prognosis buried gold deposits and implication for genesis. Geological Review, 51(5): 583-590(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200505014.htm [14] Xu, Q.H., Chen, Y.R., Jia, G.X., et al., 2007. Application of hydrocarbons in metallogenic and mineral resource exploration research. Acta Petrologica Sinica, 23(10): 2623-2638(in Chinese with English abstract). http://www.oalib.com/paper/1472006 [15] Yang, Z.H., Bao, Z.Y., Li, F.L., 2007. Study of influence factors between acidolysis hydrocarbon and pyrolysis-desorbed hydrocarbon in Ruoergai area. Computing Techniques for Geophysical and Geochemical Exploration, 29(1): 48-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT200701011.htm [16] Zhang, M.M., Chen, Y.R., Zhang, Z.W., et al., 2008. Application of gaseous hydrocarbon in gold exploration of the Huachanggou gold deposit. Geology in China, 35(4): 738-745(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200804019.htm [17] Zhao, S.Q., Wei, J.H., Gao, X., et al., 2012. Factor analysis in the geochemical subdivisions: taking 1∶50 000 debris geochemical survey in the Shibanjing area of Inner Mongolia as an example. Geological Science and Technology Information, 31(2): 27-34 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dzkjqb201202004 [18] 陈建平, 陈勇, 朱鹏飞, 等, 2011. 数字矿床模型及其应用——以新疆阿勒泰地区可可托海3号伟晶岩脉稀有金属隐伏矿预测为例. 地质通报, 30(5): 630-641. doi: 10.3969/j.issn.1671-2552.2011.05.002 [19] 陈远荣, 贾国相, 戴塔根, 2002. 论有机质与金属成矿和勘查. 中国地质, 29(3): 257-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200203003.htm [20] 成秋明, 赵鹏大, 张生元, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定. 地球科学——中国地质大学学报, 34(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902002.htm [21] 蒋永建, 魏俊浩, 周京仁, 等, 2010. 勘查地球化学新方法在矿产勘查中的应用及其地质效果. 物探与化探, 34(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002003.htm [22] 李福顺, 康如华, 胡绪云, 等, 2012. 南岭魏家钨矿床地质特征及找矿前景分析. 中国地质, 39(2): 445-457. doi: 10.3969/j.issn.1000-3657.2012.02.016 [23] 李生郁, 郑康乐, 徐丰孚, 1990. 微量轻烃气体快速分析方法及其在金属矿化探中的应用. 物探与化探, 14(4): 303-311. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199004008.htm [24] 刘琰, 邓军, 孙岱生, 等, 2007. 四川虎牙雪宝顶W-Sn-Be矿床矿物学标型特征及流体对矿物形态的影响. 地球科学——中国地质大学学报, 32(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701010.htm [25] 孙剑, 陈岳龙, 李大鹏, 2011. 隐伏矿床勘查地球化学新进展. 地球科学进展, 26(8): 822-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108004.htm [26] 王永华, 龚敏, 龚鹏, 等, 2010. 江西九江城门山铜多金属矿床土壤轻烃找矿试验. 地质通报, 29(7): 1056-1061. doi: 10.3969/j.issn.1671-2552.2010.07.012 [27] 谢桃园, 陈远荣, 张璟, 等, 2010. 烃气测量法在黑龙江乌拉嘎金矿区找矿预测评价中的应用. 地质与勘探, 46(3): 506-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003018.htm [28] 徐庆鸿, 陈远荣, 贾国相, 等, 2007. 烃类组分在金属矿床的成矿理论和矿产勘查研究中的应用. 岩石学报, 23(10): 2623-2638. doi: 10.3969/j.issn.1000-0569.2007.10.028 [29] 徐庆鸿, 陈远荣, 毛景文, 等, 2005. 有机烃在预测隐伏金矿床中的应用及其成因探索. 地质论评, 51(5): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200505014.htm [30] 杨振鸿, 鲍征宇, 李方林, 2007. 若尔盖地区酸解烃与热释烃影响因素研究. 物探化探计算技术, 29(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT200701011.htm [31] 张苗苗, 陈远荣, 张志伟, 等, 2008. 气态烃在铧厂沟金矿找矿中的应用. 中国地质, 35(4): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200804019.htm [32] 赵少卿, 魏俊浩, 高翔, 等, 2012. 因子分析在地球化学分区中的应用: 以内蒙古石板井地区1∶5万岩屑地球化学测量数据为例. 地质科技情报, 31(2): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202003.htm