Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China
-
摘要: 土壤地球化学测量工作对发现土壤中与成矿有关的地球化学异常进而对指导找矿具有重要的意义.内蒙古白音诺尔铅锌矿床是我国北方一个典型的矽卡岩型矿床, 具有大而富的特点.选取内蒙古白音诺尔铅锌矿区某已开采矿体上方6号土壤垂直剖面、以及距离6号剖面分别约1.0 km和4.5 km的非矿土壤垂直剖面3和8,垂向上通过每隔10 cm取样,进行了系统的土壤磁化率测试和与成矿有关的部分微量元素的总量测试分析.结果显示,尽管近矿剖面6和远矿剖面3中磁化率与土壤深度之间呈良好的负相关关系,但剖面6中9种元素含量均显示“顶底低中间高”的“倒C型”分布,而远矿剖面3和8中元素含量多呈动荡波动.这些研究思路与结论可为覆盖区表生土壤地球化学测量及矿产预测研究提供借鉴,对系统模拟和研究地球化学组分在矿区及周边残积土剖面中的迁移演化规律及其影响因素亦具有指示意义.Abstract: Geochemical soil survey is of great significance to find the geochemical soil anomalies related to ore deposits. Baiyinnuoer lead-zinc deposit in Inner Mongolia is one typical Skarn deposit in North China and detailed geological mining survey had been done in this area to prospect ore-bodies. In this study, 3 typical vertical soil profiles had been sampled to study the geochemical vertical transportation modes and then to further explore new ideas for mineral resource prospecting. Soil profile 6 was collected upon one Pb-Zn ore-body. Profile 3 and Profile 8 were 1 km and 4.5 km away from Profile 6, respectively. Along Profile 6 and Profile 3, soil magnetic susceptibility values decrease significantly with the depth of the soil samples increasing. The distribution patterns of all the 9 geochemical elements along Profile 6 display a similar trend which shows the concentrations are lower in both topsoil layer and half-weathered rock layer, but higher in residual subsoil layer, showing as "C-shape", which are quite different from those patterns for profile 3 and profile 8, since the element concentration values do fluctuate violently without a similar trend as shown in Profile 6. The research approach and results of this paper could be useful references for evaluating mineral resources in covered areas from the surface geochemical soil surveys and it also could provide new avenues for detecting the geochemical mechanisms for vertical transportation.
-
图 1 白音诺尔铅锌矿矿区地质简图及工作采样点示意图(引自中国地质调查局危机矿山办公室,2008)
1.上侏罗统满克头鄂博组凝灰质角岩(tcg);2.上侏罗统满克头鄂博组流纹质凝灰岩(λT);3.上侏罗统满克头鄂博组流纹质熔结凝灰岩(λIt);4.上侏罗统满克头鄂博组安山岩(α);5.二叠系林西组泥质板岩(esl);6.二叠系黄冈梁组大理岩(M);7.二叠系黄冈梁组粉沙泥质板岩(stSL);8.石英斑岩(Qπ);9.燕山早期正长斑岩(ξπ);10.燕山早期流纹质熔结凝灰岩(λTl);11.印支期花岗闪长岩(γδ);12.印支期石英闪长岩(δo);13.印支期闪长玢岩(δμ);14.铅锌矿矿体;15.地质界限;16.断层及编号;17.褶皱轴
Fig. 1. Generalized geological map and sketch map of sampling in Pb-Zn deposit in Baiyinnuoer district, Mongolia, China
表 1 土壤剖面各土层特征描述
Table 1. Basic description of soil layers of the sampling profiles
土壤剖面分层 TY006 TY003 TY008 土壤层(A) 土壤颜色由灰白色直接过渡到最上面的灰黑色甚至黑色,土壤粒度细、黏度大,该层厚度与残积层厚度相当,共采集样品10件,包括1个表层土样 土壤层呈灰黑至黑色,粒度细小,厚约80~100 cm,该层共采集样品9件,包括1件表层土样 土壤颜色由浅红棕色渐变为黑色,粒度细,黏度大,采样9个,厚约90 cm左右 残积层(B) 残积层土壤含有较多小石子,土壤呈灰白色,粒度较小,黏度一般,厚度约1 m,共采集样品10个 残积层呈棕黑色至灰黑色, 粒度较小,厚约1.4~1.5 m,该层共采集样品14件 在厚约2.2 m的范围内共采集残积层土样22个,该层土壤颜色为红棕色,粒度较细,黏度一般 半风化层(C) 母质层颜色为红棕色,粒度较大,黏度一般,出露厚度约2 m,共采集样品21个 半风化层呈棕黄色,粒度较粗,含有部分碎石,手触摸较硬,干燥,该层厚约60 cm,共采集样品7件 无 基岩 基岩未出露,挖掘后发现基岩埋藏较浅,但几乎完全风化,风化后的基岩呈红褐色,肉眼难以识别其岩性 土壤剖面下部出露基岩,基岩风化严重,风化面呈棕红色,难以辨认原岩成分 无基岩出露 -
[1] Akcay, M., Lermi, A., Van, A., 1998. Biogeochemical exploration for massive sulphide deposits in areas of dense vegetation: an orientation survey around the Kankoy deposit. Journal of Geochemical Exploration, 63(3): 173-187. doi: 10.1016/S0375-6742(98)0051-X [2] Anand, R.R., Cornelius, M., Phang, C., 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, western Australia: a contribution towards understanding metal transportation processes. Geochemistry-Exploration, Environment, Analysis, 7(3): 267-288. doi: 10.1144/1467-7873/07-142 [3] Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry Exploration Environment Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019 [4] Graham, J.W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bull. Geol. Soc. Am. , 1954, 65: 1257-1258. http://www.researchgate.net/publication/284665236_Magnetic_susceptibility_anisotropy_an_unexploited_petrofabric_element [5] Hale, M., 2000. Handbook of exploration geochemistry. Geochemical Remote Sensing of the Sub-surface, 7: 1-549. [6] Hamilton, S.M., 2000. Spontaneous potential and electrochemical cells. In: Hale, M., Govett, G.J.S., eds., Geochemical remote sensing of the sub-surface. Handbook of Exploration Geochemistry, Elsevier, Amsterdam, 7: 81-119. [7] Hao, L.B., Ma, L., Zhao, H.B., 2004. Elemental homogenization during weathering and pedogenesis of volcanic rocks from North Da Hinggan Ling. Geochimica, 33(2): 131-138(in Chinese with English abstract). [8] Jiang, Y.H., Wang, R.H., Kang, X.J., 2006. Study on distribution of soil magnetic susceptibility and Cu, Zn effective and total contents in Huzhou City, Changjiang River delta. Resources Survey and Environment, 27(3): 223-232(in Chinese with English abstract). [9] Ke, W.S., Xi, H.A., Yang, Y., et al., 2001. Analysis on characteristics of phytogeochemistry of Elsholtzia haichowensis in Daye Tonglushan copper mine. Acta Ecologica Sinica, 21(6): 907-912(in Chinese with English abstract). [10] Kristiansson, K., Malmqvist, L., 1982. Evidence for nondiffusive transport of 86222Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444-1452. doi: 10.1190/1.1441293 [11] Shang, Y.J., Wu, H.W., Qu, Y.X., 2001. Comparison of chemical indices and micro-properties of weathering degrees of granitic rocks—a case study from Kowloon, Hong Kong. Chinese Journal of Geology, 36(3): 279-294(in Chinese with English abstract). [12] Sun, C., Li, Y.F., Wang, D.Y., et al., 2011. Geochemical characteristics of rare-earth elements in the soils around iron mine regions of Anshan. Journal of Jilin Agricultural University, 33(3): 301-305(in Chinese with English abstract). [13] Sun, C.X., Wang, S.J., Ji, H.B., 2002. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province. China. Geochimica, 31(2): 119-128(in Chinese with English abstract). [14] Wang, C.Y., 1987. The foundation of geochemical prospecting. Geological Publishing House, Beijing (in Chinese). [15] Wang, L., Li, T.C., Yang, X.Y., 2012. Application of borehole core magnetic susceptibility and PXRF measurement to the Moon Mountain copper-iron mining area in Chile and prospecting prediction. Geology and Prospecting, 48(2): 396-405(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202024.htm [16] Wang, X.Q., 1996. The current situation and future of geogas. Foreign Geoexploration Technology, (5): 12-18(in Chinese with English abstract). [17] Wang, X.Q., 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10-11): 892-896(in Chinese with English abstract). [18] Wang, X.Q., Liu, Z.Y., Bai, J.F., et al., 2005. Deep-penetration geochemistry-comparison studies of two concealed deposits. Computing Techniques for Geophysical and Geochemical Exploration, 27(3): 250-255(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT200503014.htm [19] Wang, X.Q., Wen, X.Q., Rong, Y., et al., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry-Exploration Environment Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131 [20] Wang, X.Q., Zhang, B.M., Chi, Q.H., 2009. Experimental evidence of deep-penetrating geochemical migration model. Acta Mineralogica Sinica, (S1): 485-486(in Chinese with English abstract). [21] Xie, X.J., Wang, X.Q., 2003. Recent developments on deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225-238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200301041.htm [22] Xiong, W.L., 1996. The basic types and prospects of weathered residual gold deposits in Jiangxi province. Jiangxi Geology, 23(1): 1-6(in Chinese with English abstract). [23] Yu, H.T., 2007. The research about Daxing'anling of a large quantity elements content and distribution in seasonal permafrost(Dissertation). Inner Mongolia Agricultural University, Inner Mongolia (in Chinese). [24] Yu, C.T., Long, J.J., 2010. Mineralization geological conditions and gold geochemical research in Sanfang Yongfeng County. Journal of East China Institute of Technology (Natural Science), 34(1): 67-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201101014.htm [25] Zhang, S.H., Zhou, X.Q., 1999. A review of the applications of anisotropy of susceptibility to earth science. Geological Review, 45(6): 613-620(in Chinese with English abstract). [26] Zhang, B.M., 2011. Deep-penetrating geochemistry: mechanism and methods in Gobi areas(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese). [27] Zhao, Z.Z., Bi, H., Yang, Y.G., et al., 2005. Spatial distribution pattern of trace elements contents of latosol in the west of Hainan island. Earth and Environment, 33(2): 69-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200502010.htm [28] Zhou, G.H., Ma, S.M., Yu, J.S., et al., 2002. Vertical distribution of elements in soil profiles and their significance for geological and environmental. Geology and Prospecting, 38(06): 70-75(in Chinese with English abstract). [29] 郝立波, 马力, 赵海滨, 2004. 岩石风化成土过程中元素均一化作用及机理: 以大兴安岭北部火山岩区为例. 地球化学, 33(2): 131-138. doi: 10.3321/j.issn:0379-1726.2004.02.003 [30] 姜月华, 王润华, 康晓钧, 2006. 长三角湖州市土壤磁化率与铜、锌有效量和全量分布规律. 资源调查与环境, 27(3): 223-232. doi: 10.3969/j.issn.1671-4814.2006.03.008 [31] 柯文山, 席红安, 杨毅, 等, 2001. 大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析. 生态学报, 21(6): 907-912. doi: 10.3321/j.issn:1000-0933.2001.06.008 [32] 尚彦军, 吴宏伟, 曲永新, 2001. 花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例. 地质科学, 36(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103002.htm [33] 孙超, 李月芬, 王冬艳, 等, 2011. 鞍山市铁矿区土壤稀土元素的地球化学特征. 吉林农业大学学报, 33(3): 301-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201103016.htm [34] 孙承兴, 王世杰, 季宏兵, 2002. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理. 地球化学, 31(2): 119-128. doi: 10.3321/j.issn:0379-1726.2002.02.003 [35] 王崇云, 1987. 地球化学找矿基础. 北京: 地质出版社. [36] 王磊, 李天成, 杨新雨, 2012. 钻孔岩心磁化率及PXRF测量在智利月亮山铁铜矿区应用与找矿预测. 地质与勘探, 48(2): 396-405. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202024.htm [37] 王学求, 1996. 地气的研究现状与未来. 国外地质勘探技术, (5): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDK199605004.htm [38] 王学求, 2005. 深穿透地球化学迁移模型. 地质通报, 24(10-11): 892-896. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1004.htm [39] 王学求, 张必敏, 迟清华, 2009. 穿透性地球化学迁移模型的实验证据. 矿物学报, (S1): 485-486. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1253.htm [40] 王学求, 刘占元, 白金峰, 等, 2005. 深穿透地球化学对比研究两例. 物探化探计算技术, 27(3): 250-255. doi: 10.3969/j.issn.1001-1749.2005.03.015 [41] 谢学锦, 王学求, 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027 [42] 熊文亮, 1996. 江西省风化残积型金矿基本类型及找矿前景分析. 江西地质科技, 23(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZK199601000.htm [43] 于成涛, 龙军军, 2010. 永丰县三坊地区成矿地质条件及金地球化学研究. 东华理工大学学报(自然科学版), 34(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201101014.htm [44] 于海涛, 2007. 大兴安岭林区季节性冻土中大量元素含量及分布特征的研究(硕士学位论文). 内蒙古: 内蒙古农业大学. [45] 张必敏, 2011. 戈壁覆盖区深穿透地球化学异常形成机理与找矿方法(博士学位论文). 北京: 中国地质科学院. [46] 张拴宏, 周显强, 1999. 磁化率各向异性地学应用综述, 地质论评, 45(6): 613-620. [47] 赵志忠, 毕华, 杨元根, 等, 2005. 海南岛西部地区砖红壤中微量元素含量及其分布特征. 地球与环境, 33(2): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200502010.htm [48] 周国华, 马生明, 喻劲松, 等, 2002. 土壤剖面元素分布及其地质、环境意义. 地质与勘探, 38(6): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206017.htm