Extraction and Applications of the Long-Term Vertical Distribution Trends of Geochemical Elements in the Loess Cover
-
摘要: 在内蒙草原覆盖区迪彦钦阿木Mo-Ag矿床长度为106.5 m黄土覆盖层垂直岩心上等间距顺序取样106个,用Niton XL3t X-荧光仪测得每个样本的33个元素的含量.在正态性检验的基础上,用Kendallτ相关系数分析了元素含量与深度的相关性,得出黄土覆盖层中Mo、S、W、Te、Fe、Cu、Ni、Mn、Sb、Rb、Cs、Sn、Zn、Ti、V、Pb、Th、As这18种元素含量与离开矿源的距离具有显著相关性;用HP滤波法分离出这18种元素含量空间序列的长期趋势,并用变量聚类分析法对长期趋势进行了分类;用因子分析法得到了迪彦钦阿木矿床Mo-W成矿因子和Pb-Zn成矿因子,并模拟得到Mo-W成矿因子的指数分布模式.本文的研究思路与结论可为覆盖区表层地球化学异常对矿产预测的指示作用研究提供借鉴.Abstract: 106 samples were sequentially collected from a 106.5 m vertical core of the loess cover on the Diyanqinamu Mo-Ag deposit in the grassland area in the Inner Mongolia. The contents of 33 elements were measured by Niton XL3t X-ray fluorescence analyzer. After the normality test, the correlation between the contents of elements and the depth were analyzed by Kendall τ correlation coefficient method, which shows that the contents of 18 elements Mo, S, W, Te, Fe, Cu, Ni, Mn, Sb, Rb, Cs, Sn, Zn, Ti, V, Pb, Th and As from the loess cover are statistically correlated with the distances from the ore source. The long-term trends of the 18 elements were detached from the content spatial series, which were classified into several clusters. Ore-forming factors Mo-W factor and Pb-Zn factor were obtained by factor analysis, and the exponent transportation modes of the Mo-W factor were simulated. The research approach and results of this paper could be useful references for evaluating mineral resources of covered areas from the surface geochemical anomalies.
-
Key words:
- covered area /
- spatial series /
- Kendall τ correlation coefficient /
- HP filtering /
- cluster analysis /
- geochemistry /
- ore prospceting /
- ore deposits
-
表 1 描述性统计分析、正态性检验和相关性分析
Table 1. Descriptive analysis, normality test and correlation analysis
描述统计 正态性检验 相关性检验 元素 均值 标准差 SW统计量 显著性p值 Kendallτ 显著性p值 相关性 Mo 16.62 47.03 0.406 <0.001 0.586 <0.000 1 相关 S 674.98 1 275.00 0.500 <0.001 0.170 0.009 9 相关 K 20 865.00 4 887.00 0.864 <0.001 0.033 0.617 0 不相关 Fe 24 756.00 12 997.00 0.261 <0.001 0.411 <0.000 1 相关 Zn 177.04 305.45 0.468 <0.001 0.423 <0.000 1 相关 Pb 36.95 42.62 0.744 <0.001 0.298 <0.000 1 相关 Au 0.27 0.95 0.299 <0.001 0.142 0.071 2 不相关 Ca 17 326.00 11 254.00 0.926 <0.001 -0.034 0.605 9 不相关 Ti 3 269.00 1 079.00 0.948 0.004 0.212 0.001 3 相关 Mn 1 459.00 3 495.00 0.245 <0.001 0.514 <0.000 1 相关 W 14.28 30.19 0.550 <0.001 -0.134 0.397 0 不相关 Cu 37.59 22.64 0.929 <0.001 0.492 <0.0001 相关 Sc 16.89 27.86 0.659 <0.001 0.084 0.247 6 不相关 V 55.63 36.41 0.953 <0.001 0.198 0.002 7 相关 Zr 283.89 71.06 0.980 0.106 0.116 0.075 5 不相关 Sr 182.82 97.41 0.837 <0.001 -0.021 0.575 7 不相关 U 1.03 2.47 0.467 <0.001 -0.030 0.757 6 不相关 Rb 115.03 63.87 0.738 <0.001 0.400 <0.000 1 相关 Th 13.28 6.77 0.714 <0.001 0.207 0.001 6 相关 As 10.38 7.99 0.913 <0.001 0.107 0.103 0 不相关 Hg 0.20 0.78 0.273 <0.001 0.052 0.542 0 不相关 Ni 80.38 24.29 0.868 <0.001 0.345 <0.000 1 相关 Co 34.20 68.69 0.555 <0.001 -0.047 0.577 0 不相关 Cr 0.76 4.92 0.145 <0.001 -0.325 0.244 0 不相关 Ba 577.96 158.02 0.882 <0.001 0.098 0.136 0 不相关 Cs 66.56 30.12 0.859 <0.001 0.209 0.001 4 相关 Te 37.75 39.18 0.851 <0.001 0.135 0.045 5 相关 Sb 14.53 20.40 0.740 <0.001 0.163 0.021 0 相关 Sn 15.12 20.15 0.765 <0.001 0.343 <0.000 1 相关 Cd 0.68 2.89 0.250 <0.001 0.094 0.232 2 不相关 Pd 0.18 1.12 0.158 <0.001 0.027 0.732 0 不相关 表 2 成矿因子
Table 2. Ore-forming factors
Mo Cs S Te Sn W Rb Cu Fe Ni Mn Sb Th Zn As V Ti Pb Ω F1 0.974 0.970 0.956 0.955 0.942 0.894 0.882 0.857 0.811 0.732 0.725 0.651 -0.268 0.228 -0.210 0.542 0.656 0.014 0.661 F2 -0.206 0.131 -0.293 -0.057 0.082 -0.024 0.191 0.442 0.585 0.665 0.404 0.485 0.891 0.808 0.784 0.759 0.695 0.614 0.997 注:Ω是因子的累计方差贡献率,第1个因子F1方差贡献率为66.1%;前2个因子的累计方差贡献率为99.7%. -
[1] Ahumada, H., Garegnani, M.L., 1999. Hodrick-prescott filter in practice. Economia, 45(3): 61-76. [2] Allègre, C.J., Minster, J.F., 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Plantary Science Letters, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1 [3] Anand, R.R., Paine, M., 2002. Regolith geology of the Yilgarn Craton, western Australia: implications for exploration. Australian Journal of Earth Sciences, 49(1): 3-162. doi: 10.1046/j.1440-0952.2002.009.12.x [4] Basu, A., Molinaroli, E., 1994. Toxic metals in Venice lagoon sediments: model, observation, and possible removal. Environmental Geology, 24(3): 203-216. doi: 10.1007/BF00766890 [5] Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019 [6] Cheng, Q.M., 2012. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration(in press). http://www.sciencedirect.com/science/article/pii/S0375674212001318 [7] Cheng, Q.M., Xia, Q.L., 2011. Thoughts and practice for the integrated assessment of mineral resources in covered areas. Mineral Journal, (S1): 755-756 (in Chinese with English abstract). [8] Hodrick, R.J., Prescott, E.C., 1997. Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking, 29(1): 1-16. doi: 10.2307/2953682 [9] Hu, K., Peng, S., Zhang, S.T., 2010. Numerical simulation of contaminant transport problems in soil environment. Chinese Journal of Environmental Engineering, 4(7): 1660-1663 (in Chinese with English abstract). [10] Jin, Z.G., Xiang, X.L., Huang, Z.L., et al., 2011. Research on the element migration in bauxite deposit at Wuchuan Wachang in Guizhou north plain. Geology and Exploration, 47(6): 957-966 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201106004.htm [11] Liu, D.S., 1965. Chinese loess. Science Press, Beijing (in Chinese). [12] Nie, X.L., Hou, W.R., 2010. The discovery of the Diyanqinamu large Mo-Ag deposit in Inner Mongolia and its geology significance. Acta Geoscientica Sinica, 31(3): 469-472 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003026.htm [13] Ravn, M.O., Uhlig, H., 2002. On adjusting the Hodrick-Prescott filter for the frequency of observations. The Review of Economics and Statistics, 84(2): 371-376. doi: 10.1162/003465302317411604 [14] Ruan, X.L., Zhang, G.L., Zhao, Y.G., et al., 2006. The distribution characteristics and migration rate of heavy metals in the soil based on high density sampling. Environmental Science, 27(5): 1020-1025(in Chinese with English abstract). [15] Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52(3-4): 591-611. doi: 10.1093/biomet/52.3-4.591 [16] Tyler, G., 2004. Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma, 119(3-4): 277-290. doi: 10.1016/j.geoderma.2003.08.005 [17] Wakelin, S., Anand, R.R., Macfarlane, C., et al., 2012. Assessing microbiological surface expression over an overburden-covered VMS deposit. Journal of Geochemical Exploration, 112: 262-271. doi: 10.1016/j.gexplo.2011.09.005 [18] Wang, X.Q., 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10-11): 892-896 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2005Z1004.htm [19] Xie, X.J., Wang, X.Q., 2003. Progress in deep-penetrating geochemistry. Earth Science Frontier, 10(1): 225-238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200301041.htm [20] Zhang, S., Xiong, X.L., Seward, T.M., 2009. The migration of ore forming elements in gaseous phase and experimental studies. Earth Science Frontier, 16(1): 68-74 (in Chinese with English abstract). [21] 成秋明, 夏庆霖, 2011. 覆盖区矿产综合预测思路与实践. 矿物学报, (S1): 755-756. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1397.htm [22] 胡舸, 彭帅, 张胜涛, 2010. 土壤环境下污染物运移问题的数值模拟研究. 环境工程学报, 4(7): 1660-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201007043.htm [23] 金中国, 向贤礼, 黄智龙, 等, 2011. 黔北务川瓦厂坪铝土矿床元素迁移规律研究. 地质与勘探, 47(6): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106004.htm [24] 刘东生, 1965. 中国的黄土堆积. 北京: 科学出版社. [25] 聂秀兰, 侯万荣, 2010. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义. 地球学报, 31(3): 469-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003026.htm [26] 阮心玲, 张甘霖, 赵玉国, 等, 2006. 基于高密度采样的土壤重金属分布特征及迁移速率. 环境科学, 27(5): 1020-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200605036.htm [27] 王学求, 2005. 深穿透地球化学迁移模型. 地质通报, 24(10-11): 892-896. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1004.htm [28] 谢学锦, 王学求, 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027 [29] 张生, 熊小林, Seward, T.M., 2009. 成矿元素的气相迁移与实验研究. 地学前缘, 16(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901014.htm