• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    覆盖区勘查地球化学理论研究进展与案例

    王学求 张必敏 姚文生 孙彬彬

    王学求, 张必敏, 姚文生, 孙彬彬, 2012. 覆盖区勘查地球化学理论研究进展与案例. 地球科学, 37(6): 1126-1132. doi: 10.3799/dqkx.2012.119
    引用本文: 王学求, 张必敏, 姚文生, 孙彬彬, 2012. 覆盖区勘查地球化学理论研究进展与案例. 地球科学, 37(6): 1126-1132. doi: 10.3799/dqkx.2012.119
    WANG Xue-qiu, ZHANG Bi-min, YAO Wen-sheng, SUN Bin-bin, 2012. New Evidences for Transport Mechanism and Case Histories of Geochemical Exploration through Covers. Earth Science, 37(6): 1126-1132. doi: 10.3799/dqkx.2012.119
    Citation: WANG Xue-qiu, ZHANG Bi-min, YAO Wen-sheng, SUN Bin-bin, 2012. New Evidences for Transport Mechanism and Case Histories of Geochemical Exploration through Covers. Earth Science, 37(6): 1126-1132. doi: 10.3799/dqkx.2012.119

    覆盖区勘查地球化学理论研究进展与案例

    doi: 10.3799/dqkx.2012.119
    基金项目: 

    “深部探测技术与实验研究”科技专项第四项目“地壳全元素探测技术与实验示范” SinoProbe-04

    国家自然科学基金项目 41203038

    详细信息
      作者简介:

      王学求(1963-),男,研究员,主要从事勘查地球化学研究.E-mail: wangxueqiu@igge.cn

    • 中图分类号: P632

    New Evidences for Transport Mechanism and Case Histories of Geochemical Exploration through Covers

    • 摘要: 覆盖区勘查地球化学近年在迁移机理研究上最显著的进展是在矿体上方覆盖层土壤中直接观测到Cu、Au等纳米金属微粒和植物细胞中的成矿元素,从纳米尺度和分子水平直接观测到的微观迁移证据使得覆盖区勘查地球化学迁移机理研究从描述性模型向实证性模型实现了质的飞跃.通过对北方干旱沙漠覆盖区金矿、中部湿润农田覆盖区铜镍矿、南方植被红土覆盖区的铜金银矿研究表明,Cu、Au元素主要以纳米微粒形式穿透火山岩、变质岩和土壤覆盖层,用深穿透地球化学的微粒分离和铁锰氧化物提取技术可以有效指示隐伏矿体.干旱盆地砂岩型铀矿的研究表明,铀在氧化条件下以铀酰络阳离子(UO22+) 形式迁移到地表,并被土壤中粘土所吸附,吸附相中的铀占全部的铀比例最高(17%~40%),使用物理分离粘土或化学提取粘土吸附相铀可以有效地指示深部铀矿体.

       

    • 图  1  河南南阳周庵铜镍矿床地气、土壤和矿石中纳米微粒

      a.地气中的Cu-Ti纳米微粒;b.覆盖层土壤中的Cu-Ti纳米微粒;c.矿石中的Cu-Ti纳米微粒

      Fig.  1.  Nanoscale particles of metals in gases, soils and ores at Zhouan Cu-Ni deposit, Nanyang, Henan

      图  2  金窝子金矿上方覆盖层沙土中Au的三维空间分布

      Fig.  2.  Three dimensional distribution of Au in the sand cover over the Jinwozi gold ore body

      图  3  地气流携带纳米金属颗粒迁移模型

      Fig.  3.  Migration modal of nanoscale metal particles carried by earthgas

      图  4  穿过金窝子金矿不同粒级测量结果

      Fig.  4.  Gold distribution in different fraction of soils across the ore bodies

      图  5  河南南阳周庵隐伏铜镍矿环状异常

      Fig.  5.  Circular anomaly of concealed Zhouan Cu-Ni deposit in Nanyang, Henan

      图  6  紫金山外围的悦洋盆地底部的低温热液型金银铀矿被上方火山岩盖层覆盖示意图

      Fig.  6.  Epithermal Ag-Au-U deposit hosted in the bottom of Yueyang Basin of the periphery of Zijinshan is covered by volcanic rocks

      图  7  紫金山外围悦洋盆地隐伏银矿Au、Ag异常

      Fig.  7.  Distribution of Au and Ag over Yueyang Ag deposit at the periphery of the Zijinshan Au-Cu deposit

      图  8  吐哈盆地砂岩型铀矿地球化学异常

      Fig.  8.  Geochemical anomalies for sandstone type uranium deposits in Turpan-Harmi basin

    • [1] Anand, R.R., Cornelius, M., Phang, C., 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, western Australia: a contribution towards understanding metal transportation processes. Geochemistry: Exploration, Environment, Analysis, 7(3): 267-288. doi: 10.1144/1467-7873/07-142
      [2] Cameron, E.M., Hamilton, S.M.H., Leybourne, M.I.L., et al., 2004. Finding deeply-buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019
      [3] Cao, J.J., Hu, R.Z., Liang, Z.R., et al., 2009. TEM observation of geogas-carried particles from the Changkeng oncealed gold deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 101(3): 247-253. doi: 10.1016/j.gexplo.2008.09.001
      [4] Clark, J.R., 1993. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden. Trans. Instn. Min. Metall. (Sect. B), 102: B19-29. http://www.researchgate.net/publication/285023661_Enzyme-induced_leaching_of_B-horizon_soils_for_mineral_exploration_in_areas_of_glacial_overburden
      [5] Kristiansson, K., Malmqvist, L., 1982. Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444-1452. doi: 10.1190/1.1441293
      [6] Mann, A.W., Birrell, R.D., Gay, L.M., et al., 1995. Partial extractions and mobile metalions. In: Camuti, K.S., ed., Extended abstracts of the 17th IGES, Townsville, Australia, 31-34.
      [7] Ryss, Y.S., Goldberg, I.S., 1973. The partial extraction of metals (CHIM) method in mineral exploration. Method and Technique, 84: 5-19. http://www.researchgate.net/publication/292026105_The_method_of_partial_extraction_of_metals_CHIM_for_exploration_of_ore_deposits
      [8] Tong, C.H., Li, J.C., Ge, L.C., et al., 1998. Observation and meanings of nanoscale particles in the earthgas. Science in China (Ser. D), 28(2): 153-156(in Chinese with English abstract).
      [9] Wang, X. Q, Cheng, Z.Z., Lu, Y.X., et al., 1997. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemistry Exploration, 58(1): 63-72. doi: 10.106/S0375-6742(96)00052-0
      [10] Wang, X.Q., Ye, R., 2011. Findings of nanoscale metal particles: evidence for deep-penetrating geochemistry. Acta Geoscience Sinica, 32(1): 7-12 (in Chinese with English abstract). http://www.oalib.com/paper/1560340
      [11] Wang, X.Q., 2005. Conceptual models of deep-penetrating geochemistry. Geological Bulletin of China, 24(10-11): 892-896 (in Chinese with English abstract).
      [12] Wang, X.Q., Xie, X.J., Ye, S.Y., 1995. Concepts for gold exploration based on the abundance and distribution of ultrafine gold. Journal of Geochemistry Exploration, 55 (1-3): 93-101. doi: 10.1016/0375-6742(95)00026-7
      [13] Wang, X.Q., Xu, S.F., Zhang, B.M., et al., 2011. Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan-Hami basin, north-western China. Applied Geochemistry, 26(12): 2238-2246. doi: 10.1016/j.apgeochem.2011.08.006
      [14] Wang, X.Q., Zhang, B.M., Liu, X.M., 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101-112 (in Chinese with English abstract).
      [15] Xie, X.J., Wang, X.Q., 2003. New progress on deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225-238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200301041.htm
      [16] Ye, R., Zhang, B.M., Yao, W.S., et al., 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203014.htm
      [17] 童纯菡, 李巨初, 葛良全, 等, 1998. 地气物质纳米微粒的实验观测及其意义. 中国科学(D辑), 28(2): 153-156. doi: 10.3321/j.issn:1006-9267.1998.02.007
      [18] 王学求, 2005. 深穿透地球化学迁移模型. 地质通报, 24(10-11): 892-896. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1004.htm
      [19] 王学求, 叶荣, 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7-12. doi: 10.3975/cagsb.2011.01.02
      [20] 王学求, 张必敏, 刘雪敏, 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203012.htm
      [21] 谢学锦, 王学求, 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027
      [22] 叶荣, 张必敏, 姚文生, 等, 2012. 隐伏矿上方纳米铜微粒存在形式与成因. 地学前缘, 19(3): 120-129.
    • 加载中
    图(8)
    计量
    • 文章访问数:  240
    • HTML全文浏览量:  174
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-10-23
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-06-15

    目录

      /

      返回文章
      返回