Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas
-
摘要: 围绕覆盖区矿产综合预测的基本思路和关键方法问题,讨论了非线性矿产预测理论和方法如何在覆盖区矿产综合预测中发挥作用,重点介绍了成矿奇异性理论与非线性矿产预测方法在覆盖区矿产预测“弱信息”提取、“复合叠加信息”分解、“缺失和不完整信息”融合等关键问题中的应用.结合正在实施的中国地质调查局“覆盖区矿产综合预测”计划项目,介绍了三方面的研究进展:(1)覆盖层中地球化学元素迁移机理与覆盖层对地表地球化学异常的屏蔽和衰减作用;(2)如何识别由于覆盖层影响而造成的“弱”且“复杂”的地球化学异常;(3)如何综合具有缺失或不完整的多元勘查信息以达到提高覆盖区矿产综合预测精度、降低预测不确定性的目的.以东天山戈壁沙漠覆盖区海相火山岩型铁矿、大兴安岭南部草原覆盖区铁多金属矿、武夷山层控矽卡岩型铁矿等矿床预测为例,介绍了综合预测方法的应用过程和应用效果.研究结果表明,奇异性理论和分析方法可以有效地用于提取水系沉积物地球化学和地球物理(重、磁)弱异常,合理分解复合叠加异常,在此基础上,采用地球化学和地球物理异常的数据融合技术,分别建立了推断铁镁质火山岩、中酸性侵入岩、矽卡岩和热液蚀变等成矿或控矿地质要素的综合信息模型,以及基于综合预测要素建立的覆盖区矿产预测后验概率证据权模型和模糊逻辑模型.应用结果显示,介绍的预测方法不仅可以在出露区圈定成矿远景区,而且在戈壁沙漠覆盖区及第三、第四系松散沉积物覆盖区等均可圈出具有重要资源潜力的远景区,这些远景区往往会被传统的预测方法所遗漏.Abstract: In this paper, it is shown that the element concentration in the stream sediments in the covered areas can be very low due to decay and mask effects even if a thin layer of overburden exists. The examples introduced in the paper for prediction of mineral deposits of skarn types have demonstrated that the nonlinear singularity and generalized self-similarity theories and methods can be used to map anomalies for locating undiscovered mineral deposits in areas covered by transported regolith. Three main aspects of difficulties facing mineral exploration and mineral deposit prediction in covered areas are discussed in the paper which include weak anomalies detection and recognition, decomposition of complex and mixing anomalies due to multiple geo-processes, and application of evidential layers with missing or incomplete information due to covers. Various models have been proposed for prediction of various objects including felsic intrusions, skarn and hydrothermal alterations and local geochemical anomalies. Several datasets, including 1∶200 000 scale geological maps, stream sediment geochemical data, aeromagnetic and gravity data were applied for delineation of potential target areas for Fe mineral deposits of volcanic skarn and hydrothermal types in the areas covered by desert and Ternary to Quaternary sediments.
-
图 4 矿床成因模型
a.哈密市雅满苏式铁矿床成因模式图(刘德权等,1996年);b.大兴安岭地区朝不楞矽卡岩型铁多金属矿床成矿模式示意图(从勘探剖面改编);c.福建武夷山马坑层控矽卡岩型铁矿的典型矿床成因模式图(赵一鸣等, 1983).图 4a中,1.流纹质晶屑凝灰岩;2.安山质沉凝灰岩;3.钾细碧玢岩;4.石榴石矽卡岩(含凝灰岩残留体);5.流纹质凝灰岩(钠长石化);6.灰岩;7.破火山口充填的次玄武玢岩;8.流纹质玻屑凝灰岩;9.铁矿体;10.火山喷发不整合面(线).图 4b中,1.第四系沙土;2.第三系红土;3.角岩;4.大理岩;5.矽卡岩;6.铁矿体;7.花岗岩.图 4c中,1.粉砂岩和细砂岩;2.泥质板岩;3.结晶灰岩和大理岩;4.编制石英砂(砾)岩、石英岩;5.变凝灰岩或灰质粉砂岩;6.片理化变质粉砂岩;7.磁铁矿体;8.矽卡岩;9.钾化;10.花岗质混合岩化;11.辉绿闪长岩;12.花岗岩类
Fig. 4. Mineral deposits models
-
[1] Agterberg, F.P., 1989. Computer programs for mineral exploration. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76 [2] Bonham-Carter, G.F., 1994. Geographic information system for geosciences: modelling with GIS. Pergamon Press, Oxford. [3] Anand, R.R., Robertson, I.D.M., 2012. The role of mineralogy and geochemistry in forming anomalies on interfaces and in areas of deep basin cover: implications for exploration. Geochemistry: Exploration, Environment, Analysis, 12(1): 45-66. doi: 10.1144/1467-7873/10-RA-067 [4] Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019 [5] Cameron, E.M., Leybourne, M.I., Kelley, D.L., 2002. Exploring for deeply covered mineral deposits: formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters. Geology, 30(11): 1007-1010. doi: 10.1130/0091-7613(2002)030<1007:EFDCMD>2.0.CO;2 [6] Cameron, E.M., Leybourne, M.I., Palacios, C., 2008. Economic geology models 1. geochemical exploration and metallogenic studies, northern Chile. Geoscience Canada, 35(3-4): 1-12. http://www.freepatentsonline.com/article/198169156.html [7] Carrigan, C.R., Heinle, R.A., Hudson, G.B., 1996. Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature, 382: 528-531. doi: 10.1038/382528a0 [8] Chen, Y.L., 1999. Geochemistry of granitoids from the eastern Tianshan Mountains and northern Qinling Belt. Geological Publish House, Beijing (in Chinese). [9] Chen, Y.C., Wang, D.H., 2010. Prediction classification of major mineral deposits types. Geological Publish House, Beijing (in Chinese). [10] Cheng, Q.M., 1989. A method for estimation of resources from multiple populations. Journal of Changchun University of Earth Sciences, 19(5): 50-56(in Chinese with English abstract). [11] Cheng, Q.M., Agterberg F.P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649 [12] Cheng, Q.M., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961. doi: 10.1016/S0098-3004(99)00060-6 [13] Cheng, Q.M., 2000. Geodata analysis system (GeoDAS) for mineral exploration: unpublished user's guide and exercise manual. Material for the training workshop on GeoDAS, Toronto, 204. [14] Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002 [15] Cheng, Q.M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6 [16] Cheng, Q.M., 2008b. A combined power-law and exponential model for streamflow recessions. Journal of Hydrology, 352(1-2): 157-167. doi: 10.1016/j.hydrol.2008.01.017 [17] Cheng, Q.M., 2008c. Singularity of mineralization and multi-fractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 298-305(in Chinese with English abstract). http://www.researchgate.net/publication/289701679_Singularity_of_mineralization_and_multifractal_distribution_of_mineral_deposits [18] Cheng, Q.M., 2011. Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources. Earth Science—Journal of China University of Geosciences, 36(2): 307-316 (in Chinese with English abstract). [19] Cheng, Q.M., 2012a. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007 [20] Cheng, Q.M., 2012b. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes in Geophysics, 19: 57-68. doi: 10.5194/npg-19-57-2012 [21] Cheng, Q.M., 2012c. Vertical distribution of elements in regoliths over mineral deposits and implicationon mapping geochemical weak anomalies caused by buried sources in covered areas. Geochemistry: Environment, Exploration and Analysis(in press). [22] Cheng, Q.M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. eds., Proceedings of the fifth annual conference of the international association for mathematical geology. Natural Resources Research, 9(1): 43-52. doi: 10.1023/A:1010109829861 [23] Cheng, Q.M., Liu, J.T., Zhang, S.Y., et al., 2009. Application of GIS-Model builder technology for national mineral resource assessment. Earth Science—Journal of China University of Geosciences, 34(2): 338-346 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.036 [24] Cohen, D.R., Kelley, D.L., Anand, R., 2010. Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. doi: 10.1144/1467-7873/09-215 [25] Deng, S.T., Guo, Z.J., Zhang, Z.C., 2006. Metallogenic age and significance of contact metasomatic type iron deposits in the eastern Tianshan. Geology and Prospecting, 42(6): 17-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt200606004 [26] Dunn, C.E., 2007. Biogeochemistry in mineral exploration: handbook of exploration and environmental geochemistry 9, Elsevier, Amsterdam. Geochemistry: Exploration, Environment, Analysis, 10: 17-26. http://www.sciencedirect.com/science/article/pii/S1874273407090018 [27] Einaudi, M.T., Burt, D.M., 1982. Introduction—terminology, classification and composition of skarn deposits. Economic Geology, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745 [28] Goldberg, I.S., 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61(1-3): 191-202. doi: 10.106/S0375-6742(97)00045-9 [29] Govett, G.J.S., 1973. Differential secondary dispersion in transported soils and post-mineralization rocks: an electrochemical interpretation. In: Jones, M.J., ed., Geochemical exploration. Institution of Mining and Metallurgy, London, 81-91. [30] Govett, G.J.S., 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely shaped surface soil samples. Journal of Geochemical Exploration, 6(1-2): 359-382. doi: 10.1016/0376-6742(76)90024-8 [31] Jin, Y., Liu, Y.T., Xie, Y.L., 2005. Relationship between magmatism and polymetal mineralization in Dongwuqi area, Inner Mongolia. Geology and Mineral Resources of South China, (1): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200501001.htm [32] Liu, D.Q., Tang, Y.L., Zhou, R.H., 1996. Metallogenic series types of ore deposits in Xinjiang. Geological Publishing House, Beijing (in Chinese). [33] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. Characteristics of regional mineralization in Daxinanling, Inner Mongolia, China. Earth Science Frontiers, 11(1): 270-277(in Chinese with English abstract). [34] Ma, R.S., Shu, L.S., Sun, J.Q., 1997. The tectonic deformation, evolution and metallization in the eastern Tianshan Belt, northwest China. Geological Publish House, Beijing, 202 (in Chinese). [35] Mann, A.W., 2010. Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochemistry: Exploration, Environment, Analysis, 10(1): 17-26. doi: 10.1144/1467-7873/09-216 [36] Mann, A.W., Birrel, R.D., Fedikow, M.A.F., et al., 2005. Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5(3): 201-210. doi: 10.1144/1467-7873/03-045 [37] McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al., 1983. Characteristic analysis-1981: final program and a possible discovery. Mathematical Geology, 15(1): 59-83. doi: 10.1007/BF01030076 [38] Moon, C.J., 1999. Towards a quantitative model of downstream dilution of point source. Journal of Geochemical Exploration, 65(2): 111-132. doi: 10.106/S0375-6742(98)00065-X [39] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re-Os isotopic age dating of molybdenite separates from the Chaobulengskarn iron-polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia. ACTA Geoscientifica Sinica, 28(4): 315-323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200704000.htm [40] Nie, X.L., Hou, W.R., 2010. The discovery of the Diyanqinamu large-size Mo-Ag deposit, Inner Mongolia, and its geological significance. ACTA Geoscientica Sinica, 31(3): 469-472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003026.htm [41] Saaty, T.L., 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Book Co., New York. [42] Shao, J.D., Tao, J.X., Li, S.W., et al., 2009. The new progress in ore prospecting within Daxing'anling mineralization belt, China. Geological Bulletin of China, 28(7): 955-962(in Chinese with English abstract). http://www.researchgate.net/publication/296710610_The_new_progress_in_ore_prospecting_within_Daxing'_anling_mineralization_belt [43] Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Natural Resources Research, 2(2), 69-81. doi: 10.1007/BF02272804 [44] Smee, B.W., 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61(1-3): 149-172. doi: 10.1016/S0375-6472(98)00007-7 [45] Smee, B.W., 1983. Laboratory and field evidence in support of the electrochemically-enhanced migration of ions through glaciolacustrine sediment. Journal of Geochemical Exploration, 19(1-3): 277-304. doi: 10.1016/0375-6742(83)90022-5 [46] Wang, C.Y., Ma, R.S., 1994. Study on the regional metamorphism and the tectonic settings in the eastern Tianshanorogenic belt. Journal of Nanjing University (Natural Science Edition), 30(3): 494-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ403.017.htm [47] Wang, D.H., Li, C.J., Chen, Z.H., et al., 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910-915(in Chinese with English abstract). http://www.researchgate.net/publication/279675833_Metallogenic_characteristics_and_direction_in_mineral_search_in_the_East_Tianshan_Xinjiang_China [48] Wang, X.Q., Zhang, B.M., Liu, X.M., 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101-112. http://www.researchgate.net/publication/283363571_Nanogeochemistry_deep-penetrating_geochemical_exploration_through_cover [49] Wang, X.Q., Wen, X.Q., Rong, Y., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131 [50] Xu, L.Q., Chen, Z.Y., Chen, Z.H., et al., 2010. SHRIMP dating of medium-coarse-granite in Chaobuleng iron deposit, Dong Ujimqin, Inner Mongolia. Mineral Deposits, 29(2): 317-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201002014.htm [51] Ye, R., Zhang, B.M., Yao, W.S., 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203014.htm [52] Zhang, B.M., Chi, Q.H., Zhang, Y.S., 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposits in arid desert terrains. Earth Science Frontiers, 19(3): 130-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203015.htm [53] Zhao, J., Wang, W.L., Dong, L.H., et al., 2012. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical Exploration, 122: 81-89. doi: 10.1016/j.gexplo.2012.08.006 [54] Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200705002.htm [55] Zhao, Y.M., Tan, H.J., Xu, Z.L., et al., 1983. The calcic-skarn iron ore deposits of Makeng type in Southwestern Fujian. Journal of Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (Special Issue 1): 1-141. http://www.researchgate.net/publication/291303483_The_calcic-skarn_iron_ore_deposit_of_making_type_in_southwestern_Fujian [56] 陈岳龙, 1999. 东天山、北秦岭花岗岩类地球化学. 北京: 地质出版社. [57] 陈毓川, 王登红, 2010. 重要矿产预测类型划分方案. 北京: 地质出版社. [58] 成秋明, 1989. 多母体资源总量模拟方法. 长春地质学院学报, 19(5): 50-56. [59] 成秋明, 2008c. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm [60] 成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36 (2): 307-316. doi: 10.3799/dqkx.2011.032 [61] 成秋明, 刘江涛, 张生元, 等, 2009. GIS中的空间建模器技术及其在全国矿产资源潜力预测中的应用. 地球科学, 34(2): 338-346. doi: 10.3321/j.issn:1000-2383.2009.02.017 [62] 邓松涛, 郭召杰, 张志诚, 2006. 东天山接触交代型铁矿成矿时代的确定及其意义. 地质与勘探, 42(6): 17-20. doi: 10.3969/j.issn.0495-5331.2006.06.004 [63] 金岩, 刘玉堂, 谢玉玲, 2005. 内蒙古东乌旗地区岩浆活动与多金属成矿的关系. 华南地质与矿产, (1): 8-12. doi: 10.3969/j.issn.1007-3701.2005.01.002 [64] 刘德权, 唐延龄, 周汝洪. 1996. 中国新疆矿床成矿系列. 北京: 地质出版社. [65] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm [66] 马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-201. [67] 聂凤军, 张万益, 杜安道, 等, 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 地球学报, 28(4): 315-323. doi: 10.3321/j.issn:1006-3021.2007.04.001 [68] 聂秀兰, 侯万荣. 2010. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义. 地球学报, 31(3): 469-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003026.htm [69] 邵积东, 陶继雄, 李四娃, 等, 2009. 大兴安岭成矿带找矿工作新进展. 地质通报, 28(7): 955-962. doi: 10.3969/j.issn.1671-2552.2009.07.015 [70] 王赐银, 马瑞士, 1994. 东天山造山带区域变质作用及其构造环境研究. 南京大学学报(自然科学版), 30(3): 494-503. doi: 10.3321/j.issn:0469-5097.1994.03.001 [71] 王登红, 李纯杰, 陈郑辉, 等, 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910-915. doi: 10.3969/j.issn.1671-2552.2006.08.002 [72] 王学求, 张必敏, 刘学敏, 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203012.htm [73] 许立权, 陈志勇, 陈郑辉, 等, 2010. 内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP年令及其意义. 矿床地质, 29(2): 317-322. doi: 10.3969/j.issn.0258-7106.2010.02.013 [74] 叶荣, 张必敏, 姚文生, 等, 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203014.htm [75] 张必敏, 迟清华, 张永勤, 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203015.htm [76] 赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001 [77] 赵一鸣, 毕承思, 谭惠静, 等, 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊. (专辑1): 1-141. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300007002.htm