Glacier Temporal-Spatial Change Characteristics in Western Nyainqentanglha Range, Tibetan Plateau 1977-2010
-
摘要: 青藏高原现代冰川变化是对气候变化的响应, 对区域水资源评估有着重要的理论意义和现实意义.采用GIS分析方法, 利用三期卫星遥感数据研究青藏高原中部念青唐古拉山西段冰川在2个时间段(1977-2001和2001-2010)的时空分布和变化, 并对比分析其在南坡和北坡变化速率趋势以及在不同海拔高度的变化特征.研究发现: (1)2010年念青唐古拉山西段冰川面积为571.81±16.01 km2, 主要分布在5 500~6 200 m的高山区; (2)1977-2010年念青唐古拉山西段冰川退缩明显, 总面积减少22.42%±2.90%;(3)相比于1977-2001年时间段, 近十年来该区冰川退缩速率呈明显加剧趋势; (4)与前一个时段相比, 低于5 700 m海拔区域, 各海拔段的冰川年均面积退缩速率呈减缓趋势; 而在5 700~7 000 m海拔区域, 则呈加剧趋势; (5)北坡冰川退缩率(23.6%±2.88%)高于南坡(21.97%±2.90%), 且南北坡2001-2010年年均冰川面积减少最大的海拔段比1977-2001年都升高了200 m, 研究区冰川的持续退缩有向高海拔转移的趋势; (6)南坡拉萨河流域内的冰川年均减少面积最大的海拔段比北坡高100 m左右.气温升高是影响近十年以来研究区的冰川退缩加剧的根本原因, 将对区域水文和生态环境产生重大的影响.
-
关键词:
- 气候变化 /
- 冰川退缩 /
- 青藏高原 /
- 念青唐古拉山西段冰川
Abstract: Three atmospheric/topographic corrected Landsat images (acquired form 17/03/1977, 05/02/2001, 06/02/2010) have been used to map the glacier extents using threshold ratio images (BAND4/BAND5) and ISODATA unsupervised classification, respectively. A few of manual editing was made to correct the outline at ice-lake contacts and at debris covered glaciers. Spatial-temporal distribution and changes of glaciers are analyzed based on GIS and RS. Results show that (1) The glacier in WNR covered 571.81±16.01 km2 in 2010, located mainly at the elevation zone of 5 500-6 200 m; (2) The glacier retreat is obvious in recent three decades, especially in the last decade. The glacier area had decreased by 22.42%±2.90% between 1977 and 2010. (3) Compared to the period 1977-2001, the glacier retreat rate in the last decade is higher. (4) The annual mean reduction of glacier area slows down in the elevation zone of lower 5 700 m, while it speeds up between 5 800-7 000 m. (5) In Lhasa River basin the elevation zone that the glacier reduction fastest is 100 m higher than that in the Namco basin. The Lhasa river basin glacier reduction was affected by the climate change and anthropogenic activities, while the glacier retreat in Namco basin was mainly caused by climate change. (6) The rate of glacier retreat is higher in Namco basin on the northern slope (23.6%±2.88%) of research area than those on the southern slope (21.97%±2.90%). And the elevation zone where the highest rate of glacier retreat during 2001-2010 is 200 m higher than those between 1977 and 2001. It indicates that the glaciers tend to shrink in higher elevation.-
Key words:
- climatic change /
- glacier retreat /
- Tibetan plateau /
- western Nyainqentanglha range
-
图 5 不同年份(a)1977、(b)2001、(c)2010、(d)2007拉萨河流域冰川变化(局部)对比
圆圈标出同一冰川部位在不同影像中的同一位置,表示不同时相的冰川变化(MSS波段组合为RGB∶4, 2, 1;ETM+和TM波段组合为RGB∶5, 4, 3; Quickbird为RGB∶3, 2, 1)
Fig. 5. The region in the south of study area as seen in a false color composition in (a) 1977(MSS 4, 2, 1), (b) 2001 (ETM+ 5, 4, 3), (c) 2010 (TM 5, 4, 3) and (d) 2007
表 1 1977-2010年念青唐古拉山西段冰川不同区域的冰川分布和变化
Table 1. Glacier area and area changes in the south part of West Nyainqentanglha Range (1977-2010)
面积(km2) 1977-2001 2001-2010 1977-2010 1977 2001 2010 Δa1(km2) Δa2(%) Δa3(km2/a) Δa1(km2) Δa2(%) Δa3(km2/a) Δa1(km2) Δa2(%) Δa3(km2/a) 研究区 737.07 ±25.80 622.26 ±22.40 571.81 ±16.01 -114.81±24.10 -15.58±3.27 -4.59±0.96 -50.45±19.20 -8.11±3.09 -5.61±2.13 -165.26±21.40 -22.42±2.90 -4.86±0.63 纳木错流域 215.54 ±7.54 180.37 ±6.49 164.68 ±4.61 -35.17±7.00 -16.32±3.25 -1.41±0.28 -15.69±5.55 -8.70±3.08 -1.74±0.62 -50.86±6.21 -23.60±2.88 -1.50±0.18 拉萨河流域 486.58 ±17.03 409.60 ±14.75 379.69 ±10.63 -76.98±15.89 -15.82±3.27 -3.08±0.64 -29.91±13.20 -7.30±3.10 -3.32±1.41 -106.89±14.10 -21.97±2.90 -3.14±0.41 注:Δa1(km2)=发生变化的冰川面积;Δa2(%)=发生变化的冰川面积占冰川总面积的比例;Δa3(km2/a)=年均变化冰川面积. 表 2 1977-2010年西念青唐古拉南段冰川不同海拔梯高度的冰川分布和变化
Table 2. Distribution and change of glacier area in each elevation zone of West Nyainqentanglha Range from 1977-2010
海拔高度(m) 各年占冰川总面积比例(%) 面积变化(km2) 年均面积变化速率(km2/a) 1977 2001 2010 1977-2001 2001-2010 1977-2010 1977-2001 2001-2010 1977-2010 <5 200 0.01 0.00 0.00 -0.09 -0.01 -0.10 -0.003 6 -0.001 0 -0.002 9 5 200~5 300 0.16 0.14 0.13 -0.34 -0.12 -0.45 -0.013 5 -0.012 9 -0.013 3 5 300~5 400 0.39 0.36 0.32 -0.64 -0.39 -1.03 -0.025 5 -0.043 7 -0.030 3 5 400~5 500 1.28 0.82 0.70 -4.33 -1.11 -5.45 -0.173 4 -0.123 6 -0.160 2 5 500~5 600 4.67 3.09 2.69 -15.27 -3.81 -19.08 -0.610 7 -0.423 6 -0.561 1 5 600~5 700 11.50 9.65 9.34 -24.93 -6.67 -31.60 -0.997 2 -0.741 4 -0.929 5 5 700~5 800 19.31 19.24 19.43 -23.02 -8.61 -31.63 -0.920 9 -0.956 3 -0.930 3 5 800~5 900 23.97 25.42 26.10 -18.99 -8.91 -27.90 -0.759 7 -0.989 9 -0.820 6 5 900~6 000 19.76 21.02 21.33 -15.20 -8.85 -24.05 -0.607 9 -0.983 3 -0.707 2 6 000~6 100 11.54 12.23 11.98 -9.19 -7.58 -16.77 -0.367 7 -0.842 3 -0.493 3 6 100~6 200 4.14 4.55 4.47 -2.27 -2.76 -5.03 -0.090 9 -0.306 5 -0.148 0 6 200~6 300 1.44 1.64 1.62 -0.42 -0.91 -1.33 -0.016 7 -0.101 6 -0.039 2 6 300~6 400 0.46 0.55 0.55 0.02 -0.27 -0.25 0.000 8 -0.029 5 -0.007 3 6 400~6 500 0.23 0.27 0.27 -0.05 -0.12 -0.16 -0.001 9 -0.013 1 -0.004 8 6 500~6 600 0.22 0.25 0.26 -0.07 -0.08 -0.15 -0.002 8 -0.008 8 -0.004 4 6 600~6 700 0.22 0.25 0.25 -0.06 -0.10 -0.16 -0.002 6 -0.010 9 -0.004 8 6 700~6 800 0.20 0.23 0.24 -0.04 -0.05 -0.09 -0.001 6 -0.005 7 -0.002 7 6 800~6 900 0.12 0.15 0.16 -0.01 -0.02 -0.03 -0.000 6 -0.001 9 -0.000 9 6 900~7 000 0.08 0.09 0.10 -0.01 0.00 -0.01 -0.000 5 0.000 1 -0.000 3 >7 000 0.04 0.05 0.06 0.00 0.00 0.00 0.000 0 -0.000 4 -0.000 1 -
[1] Andreassen, L.M., Paul, F., Kääb, A., et al., 2008. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere, 2(2): 131-145. doi: 10.5194/tc-2-131-2008 [2] ASTER GDEM Validation Team: METI/ERSDAC/NASA/LPDAAC/USGS/EROS, 2009. ASTER Global DEM Validation Summary Report. [3] Bajracharya, S.R., Mool, P.K., Shrestha, B.R., 2007. Impact of climate change on Himalayan glaciers and glacial lakes—case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development G.P.O. Box 3226, Kathmandu, Nepal. [4] Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(17), 303-309. doi: 10.1038/nature04141 [5] Barry, R.G., 2006. The status of research on glaciers and global glacier recession: a review. Prog. Phys. Geog. , 30(3): 285-306. doi: 10.1191/0309133306pp478ra [6] Bolch, T., Yao, T., Kang, S., et al., 2010a. Interactive comment on "A glacier inventory for the western Nyainqentanglha Range and Nam Co basin, Tibet, and glacier changes 1976-2009" by T., Bolch, et al. . The Cryosphere Discussion, 4: C490-C516. www. the-cryosphere-discuss. net/4/C490/2010/ [7] Bolch, T., Yao, T., Kang, S., et al., 2010b. A glacier inventory for the western Nyainqentanglha Range and the Nam Co basin, Tibet, and glacier changes 1976-2009. The Cryosphere, 4(3): 419-433. doi: 10.5194/tc-4-419-2010 [8] Chen, F., Kang, S.C., Zhang, Y.J., et al., 2009. Glaciers and lake change in response to climate change in the Nam Co basin, Tibet. Journal of Mountain Science, 27(6): 641-647 (in Chinese with English abstract). http://www.researchgate.net/publication/284757741_Glaciers_and_Lake_Change_in_Response_to_Climate_Change_in_the_Nam_Co_Basin_Tibet [9] Dyurgerov, M.B., Meier, M.F., 2000. Twentieth century climate change: evidence from small glaciers. PNAS, 97(4): 1406-1411. doi: 10.1073/pnas.97.4.1406 [10] Gong, T.L., Liu, C.M., Liu, J.S., 2006. Hydrological response of Lhasa River to climate change and permafrost degradation in Xizang. Acta Geographica Sinica, 7(6): 641-647.131-2008, 61(5): 519-526 (in Chinese with English abstract). [11] Hall, D.K., Ormsby, J.P., Bindschadler, R.A., et al., 1987. Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Annals of Glaciology, 9: 104-108. doi: 10.3189/S0260305500000471 [12] Hoelzle, M., Chinn, T., Stumm, D., et al., 2007. The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and the southern Alps of New Zealand. Global. Planet. Change. , 56(1-2): 69-82. doi: 10.1016/j.gloplacha.2006.07.001 [13] Kang, S.C., Qin, D.H., Ren, J.W., et al., 2006. Relationships between an ice core records from southern Tibetan plateau and atmospheric circulation over Asia. Quaternary Sciences, 26(2): 153-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200602001.htm [14] Kang, S.C., Xu, Y.W., You, Q.L., et al., 2010. Review of climate and cryospheric change in the Tibetan plateau. Environ. Res. Lett. , 5(1): 015101. doi: 10.1088/1748-9326/5/1/015101 [15] Kang, S.C., Zhang, Y.J., Qin, D.H., et al., 2007. Ice-core evidence for rapid increased temperature in "Sanjiangyuan" region in recent years, Tibetan plateau. Chinese Science Bulletin, 52(4): 457-462 (in Chinese). doi: 10.1360/csb2007-52-4-457 [16] Lin, X.D., Zhang, Y.L., Yao, Z.J., et al., 2007. Trend analysis of the runoff variation in Lhasa River basin in Tibetan plateau during the last 50 years. Progress in Geography, 26(3): 58-67 (in Chinese with English abstract). http://www.researchgate.net/publication/281016645_trend_analysis_of_the_runoff_variation_in_lhasa_river_basin_in_tibetan_plateau_during_the_last_50_years [17] Liu, S.Y., Ding, Y.J., Li, J., et al., 2006. Glaciers in response to recent climate warming in western China. Quaternary Sciences, 26(5): 762-771 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2006angla..43...97d [18] Liu, W., Guo, Q.H., Wang, Y.X., et al., 2008. Temporal-spatial climate change in the last 35 years in Tibet and its geo-environmental consequences. Environmental Geology, 54(8): 1747-1754. doi: 10.1007/s00254-007-0952-y [19] Liu, X.D., Cheng, Z.G., Yan, L.B., et al., 2009. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan plateau and its surroundings. Global. Planet. Change. , 68(3): 164-174. doi: 10.1016/j.gloplacha.2009.03.017 [20] Meier, M.F., Dyurgerov, M.B., 2002. How Alaska affects the world. Science, 297(5580): 350-351. doi: 10.1126/science.1073591 [21] Mi, D.S., Xie, Z.C., Luo, X.R., 2002. China glacier inventory—the ganga drainage basin, indus river drainge basin. Xi'an Cartographic Press, Xi'an (in Chinese). [22] Nie, Y., Zhang, Y.L., Liu, L.S., et al., 2010. Glacial changes in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. J. Geogr. Sci. , 20(5): 667-686. doi: 10.1007/s11442-010-0803-8 [23] Owen, L.A., Thackray, G., Anderson, R.S., et al., 2009. Integrated research on mountain glaciers: current status, priorities and future prospects. Geomorphology, 103(2): 158-171. doi: 10.1016/j.geomorph.2008.04.019 [24] Paul, F., Huggel, C., Kääb, A., 2004a. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. , 89(4): 510-518. doi: 10.1016/j.rse.2003.11.007 [25] Paul, F., Kääb, A., Maisch, M., et al., 2004b. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 31;L21402. doi: 10.1029/2004GL020816 [26] Paul, F., Kääb, A., Max, M., et al., 2002. The new remote sensing derived Swiss glacier inventory: I. Methods. Annals of Glaciology, 34(1): 355-361. doi: 10.3189/172756402781817941 [27] Pu, J.C., Yao, T.D., Ren, L.D., 2006. Change of the Gurenhekou glacier in yangbajain area, Nyainqentanglha Range. Journal of Glaciology and Geocryology, 28(6): 861-864 (in Chinese with English abstract). http://www.researchgate.net/publication/285130409_Change_of_the_Gurenhekou_Glacier_in_Yangbajain_Area_Nyainqntanglha_Range [28] Pu, J.C., Yao, T.D., Wang, N.L., et al., 2004. Fluctuations of the glaciers on the Qinghai-Tibetan plateau during the Past Century. Journal of Glaciology and Geocryology, 26(5): 517-522 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT200405001.htm [29] Qin, D., Xiao, C., 2009. Global climate change and cryospheric evolution in China. Eur. Phys. J. Conferences. , 1: 19-28. doi: 10.1140/epjconf/e2009-00907-x [30] Rees, H.G., Collins, D.N., 2006. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Process. , 20(10): 2157-2169. doi: 10.1002/hyp.6209 [31] Richter, R., Muller, A., 2005. De-shadowing of satellite/airborne imagery. Int. J. Remote. Sens. , 26(15): 3137-3148. doi: 10.1080/01431160500114664 [32] Shangguan, D.H., Liu, S.Y., Ding, L.F., et al., 2008. Variation of glaciers in the western Nyainqentanglha Range of Tibetan plateau during 1970-2000. Journal of Glaciology and Geocryology, 30(2): 204-210 (in Chinese with English abstract). http://www.researchgate.net/publication/313697334_Variation_of_glaciers_in_the_western_Nyainqentanglha_range_of_Tibetan_Plateau_during_1970-2000 [33] Shi, Y.F., Liu, S.Y., 2000. The estimation of Chinese glacier in response to global climate warming in 21century. Chinese Science Bulletin, 45(4): 434-438 (in Chinese). doi: 10.1360/csb2000-45-4-434 [34] Shukla, A., Arora, M.K., Gupta, R.P., 2010. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ. , 114(7): 1378-1387. doi: 10.1016/j.rse.2010.01.015 [35] Toutin, T., 2008. ASTER DEMs for geomatic and geoscientic applications: a review. Int. J. Remote. Sens. , 29(7): 1855-1875. doi: 10.1080/01431160701408477 [36] Wang, X.D., Zhong, X.H., Liu, S.Z., et al., 2008. Regional assessment of environmental vulnerability in the Tibetan plateau: development and application of a new method. J. Arid. Environ. , 72(10): 1929-1939. doi: 10.1016/j.jaridenv.2008.06.005 [37] Wu, L.Z., Li, X., 2004. China glacier information system. China Ocean Press, Beijing (in Chinese). [38] Wu, Y.H., Zhu, L.P., 2008. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan plateau, during 1970-2000, J. Geogr. Sci. , 18(2), 177-189. doi: 10.1007/s11442-008-0177-3 [39] Xie, J., Liu, J.S., Du, M.Y., et al., 2010. Hydrothermal characteristics of the Land-Atmospheric System in an alpine area of west Nyainqentanglha mountains. Progress in Geography, 29(2): 151-158 (in Chinese with English abstract). http://www.oalib.com/paper/1554696 [40] Yang, Q.Y., Zheng, D., 1985. On the significance of the boundary line—the Cangdisi-Nyainqentanglha Range. Geographical Research, 4(2): 36-44 (in Chinese with English abstract). [41] Yang, W., Yao, T.D., Xu, B.Q., et al., 2008. Rapid glacial mass loss and retreat in Gangrigabu region, South-east of Tibetan plateau. Chinese Science Bulletin, 53(17) : 2091-2095 (in Chinese). doi: 10.1360/csb2008-53-17-2091 [42] Yao, T.D., Liu, S.Y., Pu, J.C., et al., 2004. The effect of glacier retreat recently in High Asia to the water resourses in north western China. Science in China (Series D), 34(6): 535-543 (in Chinese). [43] You, Q.L., Kang, S.C., Pepin, N., et al., 2009. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan plateau from homogenized surface stations and reanalysis data. Global and Planetary Change, 71(1-2): 124-133. doi: 10.1016/j.gloplacha.2010.01.020 [44] You, Q.L., Kang, S.C., Tian, K.M., et al., 2007. Preliminary analysis on climatic features at Mt. Nyainqentanglha, Tibetan plateau. Journal of Mountain Science, 25(4): 497-504 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDYA200704018.htm [45] Zhang, T.T., Ren, J.W., Kang, S.C., 2004. Lanong glacier retreat in Nyainqentanglha Range of Tibetan plateau during 1970-2003. Journal of Glaciology and Geocryology, 26(6): 736-739 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/bcdt200406011 [46] 陈锋, 康世昌, 张拥军, 等, 2009. 纳木错流域冰川和湖泊变化对气候变化的响应. 山地学报, 27(6): 641-647. doi: 10.3969/j.issn.1008-2786.2009.06.001 [47] 巩同梁, 刘昌明, 刘景时, 2006. 拉萨河冬季径流对气候变暖和冻土退化的响应. 地理学报, 61(5): 519-526. doi: 10.3321/j.issn:0375-5444.2006.05.008 [48] 康世昌, 秦大河, 任贾文, 等, 2006. 青藏高原南部冰心记录与大气环流的关系. 第四纪研究, 26(2): 153-164. doi: 10.3321/j.issn:1001-7410.2006.02.002 [49] 康世昌, 张拥军, 秦大河, 等, 2007. 近期青藏高原长江源区急剧升温的冰心证据. 科学通报, 52(4): 457-462. doi: 10.3321/j.issn:0023-074X.2007.04.014 [50] 蔺学东, 张镱锂, 姚治君, 等, 2007. 拉萨河流域近50年来径流变化趋势分析. 地理科学进展, 26(3): 58-67. doi: 10.3969/j.issn.1007-6301.2007.03.007 [51] 刘时银, 丁永健, 李晶, 等, 2006. 中国西部冰川对近期气候变暖的响应. 第四纪研究, 26(5): 762-771. doi: 10.3321/j.issn:1001-7410.2006.05.011 [52] 米德生, 谢自楚, 罗祥瑞, 2002. 中国冰川编目: 恒河水系, 印度河水系. 西安: 西安地图出版社. [53] 蒲健辰, 姚檀栋, 田立德, 2006. 念青唐古拉山羊八井附近古仁河口冰川的变化. 冰川冻土, 28(6): 861-864. doi: 10.3969/j.issn.1000-0240.2006.06.010 [54] 蒲健辰, 姚檀栋, 王宁练, 等, 2004. 近百年来青藏高原冰川的进退变化. 冰川冻土, 26(5): 517-522. doi: 10.3969/j.issn.1000-0240.2004.05.001 [55] 上官冬辉, 刘时银, 丁良福, 等, 2008.1970-2000年念青唐古拉山脉西段冰川变化. 冰川冻土, 30(2): 204-210. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200802004.htm [56] 施雅风, 刘时银, 2000. 中国冰川对21世纪全球变暖响应的预估. 科学通报, 45(4): 434-438. doi: 10.3321/j.issn:0023-074X.2000.04.021 [57] 吴立宗, 李新, 2004. 中国冰川信息系统. 北京: 海洋出版社. [58] 谢健, 刘景时, 杜明远, 等, 2010. 念青唐古拉山西段高海拔陆-气系统水热特征. 地理科学进展, 29(2): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201002007.htm [59] 杨勤业, 郑度, 1985. 冈底斯山-念青唐古拉山线自然地理意义的探讨. 地理研究, 4(2): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198502004.htm [60] 杨威, 姚檀栋, 徐柏青, 2008. 青藏高原东南部岗日嘎布地区冰川严重损耗与退缩. 科学通报, 53 (17) : 2091-2095. doi: 10.3321/j.issn:0023-074X.2008.17.015 [61] 姚檀栋, 刘时银, 蒲健辰, 等, 2004. 高亚洲冰川的近期退缩及其对西北水资源的影响. 中国科学(D辑), 34(6): 535-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406005.htm [62] 游庆龙, 康世昌, 田克明, 等, 2007. 青藏高原念青唐古拉峰地区气候特征初步分析. 山地学报, 25(4): 497-504. doi: 10.3969/j.issn.1008-2786.2007.04.017 [63] 张堂堂, 任贾文, 康世昌, 2004. 近期气候变暖念青唐古拉山拉弄冰川处于退缩状态. 冰川冻土, 26(6): 736-739. doi: 10.3969/j.issn.1000-0240.2004.06.011