Experiments on Methane Adsorption of Common Clay Minerals in Shale
-
摘要: 为了从深层次揭示控制黏土矿物天然气吸附能力的主要因素, 选择不同来源和成因的泥页岩中的常见黏土矿物进行了甲烷等温吸附实验.分析显示不同类型的黏土矿物气体吸附能力差异明显, 各种黏土矿物甲烷吸附容量次序为蒙脱石>>伊蒙混层>高岭石>绿泥石>伊利石>粉砂岩>石英岩.黏土矿物结晶结构决定了矿物片层之间的层间孔隙和聚合体颗粒之间粒间孔隙的形态和大小, 从而决定着其表面积和气体吸附性能.黏土矿物甲烷吸附能力与电镜扫描所反映的微孔隙发育程度密切相关.研究表明, 黏土矿物的气体吸附能力不仅与黏土类型有关, 而且明显受成岩演化程度和岩石成因的影响.此外, 随粒度减小孔隙连通性和内表面积的不断增加, 黏土矿物气体吸附能力有所升高.Abstract: In order to reveal the main control factors of natural gas adsorption capacity of clay minerals, the methane adsorption isotherm experiments of common clay minerals selected from different sources were performed. The analysis shows that differences of gas adsorption capacity are significant among different types of clay minerals, and the order of methane adsorption capacity of various clay minerals is smectite >> illite and smectite mixed-layers > kaolinite > chlorite > illite > siltstone > quartzite. The crystal structure of clay mineral determines the shape and size of pore spaces between polymer particles and interlayer spaces between crystal layers, and accordingly determines its surface area and gas adsorption capability. Methane adsorption capacities of clay minerals are highly consistent to the development degrees of micro-pores supplied by scanning electron microscopy. The study indicates that the gas adsorption capacity of clay minerals not only depends on the type of clay mineral, but also is significantly influenced by diagenesis and petrogenesis. In addition, the gas adsorption capacity of clay minerals slightly increases with the decrease of particle size due to the enlargement of pore connectivity and surface area.
-
Key words:
- clay mineral /
- methane adsorption /
- pore structure /
- shale gas /
- deep gas
-
表 1 实验样品全岩矿物成分X-衍射定量分析数据(%)
Table 1. Quantitative analysis data of mineral composition of experimental samples by X-ray diffraction
序号 样品号 岩性 石英 斜长石 钾长石 方解石 白云石 滑石 黄铁矿 黏土矿物 高岭石 蒙脱石 伊利石 绿泥石 伊蒙间层 1 QUART 石英岩 100.00 2 FENSH 粉砂岩 81.63 11.29 1.87 3.31 1.89 3 YLS-3 黏土岩 1.00 99.00 4 LNS-3 黏土岩 0.65 1.75 5.31 92.29 5 GLT-4 黏土岩 4.99 95.01 6 I-S 黏土岩 50.47 4.13 0.94 44.46 7 PRT-5 黏土岩 14.25 2.30 1.67 3.12 78.65 表 2 理论计算的常见黏土矿物表面积
Table 2. Suface area of common clay minerals based theoretic calculation
黏土类型 分子式 层间距(Å) 内表面积(m2/g) 外表面积(m2/g) 总表面积(m2/g) 高岭石 Al4[Si4O10](OH)8 7.2 0 15 15 绿泥石 (Mg, Al, Fe)12[(Si, Al)8O20](OH)16 14.2 0 15 15 伊利石 KAl4[Si7AlO20](OH)4 10.0 0 30 30 蒙脱石 (Ca, Na)(Al, Mg, Fe)4[(Si, Al)8O20](OH)4·nH2O 9.6~21.4 750 50 800 细石英砂 SiO2 - 0 0.02 0.02 -
[1] Aringhieri, R., 2004. Nanoporosity characteristics of some natural clay minerals and soils. Clays and Clay Minerals, 52(6): 700-704. doi: 10.1346/CCMN.2004.0520604 [2] Aylmore, L.A.G., Quirk, J.P., 1967. Micropore size distributions of clay mineral systems. Journal of Soil Science, 18(1): 1-17. doi: 10.1111/j.1365-2389.1967.tb01481.x [3] Birkeland, P.W., 1969. Quaternary paleoclimatic implications of soil clay mineral distribution in a Sierra Nevada-Great basin transect. Journal of Geology, 77(3): 289-302. doi: 10.1086/627436 [4] Chalmers, G.R.L., Bustin, R.M., 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1-3): 223-239. doi: 10.1016/j.coal.2006.05.001 [5] Chalmers, G.R.L., Bustin, R.M., 2008. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ: geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. doi: 10.2113/gscpgbull.56.1.1 [6] Cheng, A.L., Huang, W.L., 2004. Selective adsorption of hydrocarbon gases on clays and organic matter. Organic Geochemistry, 35(4): 413-423. doi: 10.1016/j.orggeochem.2004.01.007 [7] Curtis, J.B., 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11): 1921-1938. doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D [8] Gregg, S.J., Sing, K.S.W., 1982. Adsorption surface area and porosity (2nd ed). Academic Press, London and New York. [9] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068 [10] Keller, J.U., Staudt, R., 2005. Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer, Berlin. [11] Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005. Mississippian Barnett shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bulletin, 89 (2): 155-175. doi: 10.1306/09170404042 [12] Nuttall, B.C., Drahovzal, J.A., Eble, C.F., et al., 2003. Analysis of the Devonian black shale in Kentucky for potential CO2 sequestration and enhanced natural gas production. 2003 Seattle Annual Meeting, Kentucky Geological Survey, Lexington. [13] Oades, J.M., 1986. Associations of colloidal materials in soils. Transactions of the XIII Congress of the International Soil Science Society (Hamburg), 6: 660-674. [14] Palomino, A.M., Santamarina, J.C., 2005. Fabric map for kaolinite: Effects of pH and ionic concentration on behavior. Clays and Clay Minerals, 53(3): 211-223. doi: 10.1346/CCMN.2005.0530302 [15] Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of uniconventional shale-gas reservoirs. SPE, 131350: 1-27. doi: 10.2118/131350-MS [16] Ross, D.J.K., 2007. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. doi: 10.2113/gscpgbull.55.1.51 [17] Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004 [18] Spostto, G., Skipper, T., Sutton, R., et al., 1999. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci, 96(7): 3358-3364. doi: 10.1073/pnas.96.7.3358 [19] Tsipursky, S.I., Drits, V.A., 1984. The distribution of octahedral cations in the 2∶1 layers of dioctahedral smectites studied boblique-texture electron-diffraction. Clay Minerals, 19(2): 177-193. doi: 10.1180/claymin.1984.019.2.05 [20] Turekian, K.K., 1968. Oceans. Prentice-Hall Press, New Jersey. [21] Wang, C.C., Juang, L.C., Lee, C.K., et al., 2004. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280(1): 27-35. doi: 10.1016/j.jcis.2004.07.009