Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression
-
摘要: 东营凹陷为超压富烃凹陷, 钻井揭示该凹陷现今大规模超压系统出现在始新统沙三-四段烃源岩层系.根据大量的钻杆测试(DST)数据, 实测沙三-四段砂岩异常高压的深度范围约在2 200~4 400 m, 剩余压力约为4~40 MPa, 压力系数为1.2~1.99.根据钻井和测井以及地震速度资料解释, 超压带钻井泥浆密度明显增加, 超压泥岩层具有偏离正常趋势的异常高声波时差测井响应和异常低地震层速度响应特征.综合解释超压系统顶界面埋深在2 200~2 900 m, 对应地温在90~120 ℃; 超压顶界面深度随着烃源岩层系顶界埋深的增加而增加.超压系统范围内烃源岩层系样品镜质体反射率(Ro)分布在0.5%~1.2%, 沙三中、下亚段-沙四上亚段成熟烃源岩(Ro为0.5%~1.2%)及其生油作用控制了超压分布的主体区域, 佐证了东营凹陷现今大规模超压发育区与烃源岩生油增压有成因联系; 成熟烃源岩的累积厚度、埋深及热成熟度是超压系统整体分布特征和超压发育幅度的主控因素; 断裂系统和输导性砂体对东营凹陷沙三-四段烃源岩层系中发育的大规模超压系统的分布特征和结构变化具有重要影响.Abstract: Dongying depression is a typical overpressured depression with abundant petroleum resources, and the present-day large-scale overpressured system occurs in the Eocene third and fourth members of the Shahejie Formation (Es3-Es4) in the depression as evidenced by drill stem test (DST) data, and the source rocks also exist within the overpressured system. Based on a large number of drill stem test (DST) data, the burial depths of overpressured sandstone reservoirs range from 2 200 to 4 400 m with excess pressures of about 4 to 40 MPa and pressure coefficients of 1.2 to 1.99. According to the integrated interpretation of drilling, well logging and seismic velocity data, the large-scale overpressured system is associated with significant increase in drilling mud density, as well as abnormal high sonic transit times with deviation from the normal trend and low seismic interval velocity responding. On the whole, the burial depths of the top overpressured surface range from 2 200 to 2 900 m with corresponding formation temperatures ranging from 90 to 120 ℃, and the depths of top overpressure surface increase as the burial depths of source rocks deepen. Many evidences suggest that the oil generation from the source rocks is the major cause of the present-day large-scale overpressured system in the Es3-Es4 of Dongying depression. This study indicates that the large-scale overpressured system is well developed where the cumulative thickness of mature source rocks is thick and source rocks remain in oil-generating stage of thermal evolution with vitrinite reflectance values varying from 0.5% to 1.2% of overpressured source rocks, and the fault system and sandstone transporting layers have great influence on the distribution and construction change of the large-scale overpressured system in the Es3-Es4 of Dongying depression.
-
图 4 东营凹陷超压顶界面深度等值线图(A)和沙三中、下亚段与沙四上亚段最大剩余压力和压力系数等值线
a.沙三中-下亚段最大剩余压力等值线图;b.沙三中-下亚段最大压力系数等值线图;c.沙四上亚段最大剩余压力等值线图;d.沙四上亚段最大压力系数等值线图;剩余压力等值线间隔5 MPa;压力系数等值线间隔0.2
Fig. 4. Maps of depth contour of top overpressured surface (A) and contours of calculated maximum excess pressures and pressure coefficients in Es3x-Es3z and Es4s members of Dongying Depression
图 7 利用地震速度计算的压力系数与模拟计算的镜质体反射率剖面图(剖面位置见图 6)
Fig. 7. Profile of pressure coefficients using seismic velocity and vitrinite reflectances by basin modeling
表 1 沙三段和沙四段砂岩储层钻杆测压(DST)和实测超压数据统计
Table 1. Measured formation pressure data using DST within Es3 and Es4 members, and some related information in Dongying depression
层位 井数(口) 超压井数(口) 测点数(个) 超压点数(个) 超压深度范围(m) 剩余压力(MPa) 压力系数 沙三段 547 195 744 250 2 147~3 637 4.76~32.64 1.20~1.99 沙四段 495 152 652 205 2 208~4 382 5.11~39.62 1.20~1.92 注:压力系数(无量纲)=实测压力(MPa)/静水压力(MPa);静水压力梯度为0.01 MPa/m. 表 2 不同洼陷沙三段和沙四段实测砂岩储层最大超压和最大压力系数统计
Table 2. Measured maximum overpressures and pressure coefficients within Es3 and Es4 members for different subdivisions in Dongying depression
地区 代表井 测试井段(m) 层位 地层压力(MPa) 剩余压力(MPa) 压力系数 岩性 利津洼陷 河168 3 287.0~3 333.3 Es3 65.75 32.65 1.99 泥质粉砂岩 利津洼陷 坨765 4 354.3~4 410.0 Es4 83.45 39.63 1.90 含砾砂岩 牛庄洼陷 牛21 3 193.0~3 206.9 Es3 57.79 25.79 1.80 细砂岩 牛庄洼陷 史13 3 046.4~3 276.5 Es4 60.76 29.15 1.92 泥质粉砂岩 民丰洼陷 丰112 3 071.8~3 083.4 Es3 53.71 22.93 1.75 泥质粉砂岩 民丰洼陷 丰8 4 176.5~4 200.5 Es4 56.22 14.34 1.34 含砾砂岩 博兴洼陷 樊128 2 544.0~2 556.0 Es3 36.15 10.65 1.42 粉砂岩 博兴洼陷 樊137 3 152.4~3 210.2 Es4 49.49 17.68 1.56 粉砂岩 -
[1] Bao, X.H., Hao, F., Fang, Y., 2007. Evolution of geopressure field in Niuzhuang sag in Dongying depression and its effect on petroleum accumulation. Earth Science —Journal of China University of Geosciences, 32(2): 241-246(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702012.htm [2] Bowers, G.L., 1995. Pore-pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction. SPE Drilling and Completion, 10(2): 89-95. doi: 10.2118/27488-PA [3] Carcione, M.J., Helle, H.B., Pham, N.H., et al., 2003. Pore pressure estimation in reservoir rocks from seismic reflection data. Geophysics, 68(5): 1569-1579. doi: 10.1190/1.1620631 [4] Chen, Z.H., Zha, M., 2006. Over-pressure fluid compartment and hydrocarbon migration, accumulation in Dongying depression. Acta Sedimentologic Sinica, 24(4): 607-614(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200604019.htm [5] Chillingar, G.V., Serebryakov, V.A., Robertson, J.O., 2002. Origin and prediction of abnormal formation pressures. Elsevier Scientific Publishing Company, Amsterdam. [6] Fillippone, W R., 1982. Estimation of formation parameters and the prediction of overpressure from seismic data. Presented at the SEG Research Symp. Geopressure Studies, Dallas, TX, Paper R1.4, 17-21. [7] Guo, R.T., Wang J.B., Gao, X.L., et al., 2003, Evaluation of laser probe technology maturity of source rocks—a case study of source rocks in Dongying depression. Progress in Natural Science, 13(6): 626-630(in Chinese with English abstract). http://www.researchgate.net/publication/285665873_Evaluation_of_laser_probe_technology_maturity_of_source_rocksA_case_study_of_source_rocks_in_Dongying_Depression [8] Guo, X.W., He, S., Liu, K.Y., et al., 2010. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying depression, Bohai Bay basin, China. AAPG Bulletin, 94(12): 1859-1881. doi: 10.1306/05191009179 [9] Guo, X.W., He, S., Song, G.Q., et al., 2011. Evidences of overpressure caused by oil generation in Dongying depression. Earth Science—Journal of China University of Geosciences, 36(6): 55-65(in Chinese with English abstract). [10] He, S., He, Z.L., Yang, Z., et al., 2009. Characteristics, well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar basin. Earth Science—Journal of China University of Geosciences, 34(3): 457-470(in Chinese with English abstract). doi: 10.3799/dqkx.2009.051 [11] Hermanrud, C., Wensaas, L., Teige, G.M.G., et al., 1998. Shale porosities from well logs on Haltenbanken (Offshore Mid-Norway) show no influence of overpressuring. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal pressures in hydrocarbon environments. AAPG Memoir, 70: 65-85. [12] Jiang, Q.G., Li, Z.M., Zhang, C.M., et al., 2008. Characteristics of light hydrocarbons of source rocks in Dongying depression. Geological Science and Technology Information, 27(5): 87-91(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200805016.htm [13] Liu, H., Cao, Yi. C., Jiang, Z.X., et al., 2008. Distribution characteristics of evaporates and formation pressure of the fourth member of the Shahejie Formation in the Dongying sag, the Bohai Bay basin. Oil and Gas Geology, 30(3): 287-293(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200903006.htm [14] Liu, X.F., Xie, X.N., 2003. Study on fluid pressure system in Dongying depression. Earth Science—Journal of China University of Geosciences, 28(1): 78-85(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200301014.htm [15] Qiu, G.Q., Ling, Y., Fan, H.H., 2003. The characteristics and distribution of abnormal pressure in the Paleogene source rocks of Dongying sag. Petroleum Exploration and Development, 30(3): 71-75(in Chinese with English abstract). http://www.cqvip.com/QK/90664X/2003003/8030207.html [16] Ruth, P.V. Hills, R. Tingate, P., 2004. The origin of overpressure in the Carnarvon basin, western Australia: implications for pore pressure prediction. Petroleum Geosciecne, 10: 247-257. doi: 10.1144/1354-079302-562 [17] Sui, F.G., 2004. Geological scientific research institute of Shengli oil field. Journal of the University of Petroleum, 28(3): 17-21(in Chinese with English abstract). [18] Teige, G.M.G., Hermanrud, C., Wensaas, L., et al., 1999. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales. Marine and Petroleum Geology, 16(4): 321-335. doi: 10.1016/S0264-8172(98)00035-X [19] Tingay, M.R.P., Hillis, R.R., Swarbrick, R.E., et al., 2009. Origin of overpressure and pore-pressure prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. doi: 10.1306/08080808016 [20] Wang, B.J., He, S., Song, G.Q., et al., 2012. Effective stress characteristics of different overpressured origins in Dongying depression of the Bohai Bay basin, China. Geological Science and Technology Information, 31(2): 72-79(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201202011.htm [21] Winthaegen, P.L.A., Verweij, J.M., 2003. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben. Journal of Geochemical Exploration, 78-79: 203-207. doi: 10.1016/S0375-6742(03)00106-7 [22] Xie, X.N., Bethke, C.M., Li, S., et al., 2001. Overpressure and petroleum generation and accumulation in the Dongying depression of Bohaiwan basin, China. Geofluids, 1(4): 257-271. doi: 10.1046/j.1468-8123.2001.00017.x [23] Xie, X.N., Li, S.T., Liu, X.F., et al., 2006. Basin fluid dynamics in abnormally pressured environments. China University of Geosciences Press, Wuhan(in Chinese). [24] Yang, J., He, S., Wang, B.J., 2009. Control of pressure system development on reservoir formation in the Dongying sag, Shengli oilfield, East China. Geological Science and Technology Information, 28(4): 34-40(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S187638041060033X [25] Zhang, S.W., Zhang, L.Y., Zhang, S.C., et al., 2009. Formation of abnormal high pressure and its application in the study of oil-bearing property of lithologic hydrocarbon reservoirs in the Dongying sag. Chinese Science Bulletin, 54(11): 1570-1578(in Chinese with English abstract). doi: 10.1360/csb2009-54-11-1570 [26] Zhang, S.C., Zhang, L.Y., Zha. M., 2010. Control of pressure system development on reservoir formation in the Dongying sag, Shengli oilfield, East China. Petroleum Exploration and Development, 37(3): 289-296(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60033-X [27] Zhao, G.X., 2008. Study of the abnormal high pressure in hydrocarbon source rocks—taking paleogene in the Dongying sag, the Bohai bay basin as an example. Petroleum Geology and Example, 30(4): 340-344(in Chinese with English abstract). http://www.cqvip.com/QK/95265X/200804/28304957.html [28] Zheng, H.R., Huang, Y.L., Feng, Y.L., 2000. Anomalous overpressure system of early Tertiary in Dongying depression and its petroleum geology significance. Petroleum Exploration and Development, 27(4): 67-70(in Chinese with English abstract). http://www.researchgate.net/publication/288958119_Anomalous_overpressure_system_of_early_Tertiary_in_Dongying_depression_and_its_petroleum_geology_significance [29] 鲍晓欢, 郝芳, 方勇, 2007. 东营凹陷牛庄洼陷地层压力演化及其成藏意义. 地球科学——中国地质大学学报, 32(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702012.htm [30] 陈中红, 查明, 2006. 东营凹陷流体超压封存箱与油气运聚. 沉积学报, 24(4): 607-614. doi: 10.3969/j.issn.1000-0550.2006.04.020 [31] 郭汝泰, 王建宝, 高喜龙, 等, 2003. 应用激光探针技术评价烃源岩成熟度——以东营凹陷生油岩研究为例. 自然科学进展, 13(6): 626-630. doi: 10.3321/j.issn:1002-008X.2003.06.011 [32] 郭小文, 何生, 宋国奇, 等, 2011. 东营凹陷生油增压成因的证据. 地球科学——中国地质大学学报, 36(6): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106014.htm [33] 何生, 何治亮, 杨智, 等, 2009. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因. 地球科学——中国地质大学学报, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm [34] 蒋启贵, 李志明, 张彩明, 等, 2008. 东营凹陷烃源岩轻烃特征. 地质科技情报, 27(5): 87-91. doi: 10.3969/j.issn.1000-7849.2008.05.015 [35] 刘晖, 操应长, 姜在兴, 等, 2008. 渤海湾盆地东营凹陷沙河街组四段膏盐层及地层压力分布特征. 石油与天然气地质, 30(3): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200903006.htm [36] 刘晓峰, 解习农, 2003. 东营凹陷流体压力系统研究. 地球科学——中国地质大学学报, 28(1): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301014.htm [37] 邱桂强, 凌云, 樊洪海, 2003. 东营凹陷古近系烃源岩超压特征及分布规律. 石油勘探与开发, 30(3): 71-75. doi: 10.3321/j.issn:1000-0747.2003.03.020 [38] 隋风贵, 2004. 东营断陷盆地地层流体超压系统与油气运聚成藏. 石油大学学报(自然科学版), 28(3): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200403004.htm [39] 王冰洁, 何生, 宋国奇, 等, 2012. 东营凹陷不同超压成因的有效应力特征. 地质科技情报, 31(2): 72-79. doi: 10.3969/j.issn.1000-7849.2012.02.012 [40] 解习农, 李思田, 刘晓峰, 等, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社. [41] 杨姣, 何生, 王冰洁, 2009. 东营凹陷牛庄洼陷超压特征及预测模型. 地质科技情报, 28(4): 34-40. doi: 10.3969/j.issn.1000-7849.2009.04.006 [42] 张善文, 张林晔, 张守春, 等, 2009. 东营凹陷古近系异常高压的形成与岩性油藏的含油性研究. 科学通报, 54(11): 1570-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200911016.htm [43] 张守春, 张林晔, 查明, 2010. 东营凹陷压力系统发育对油气成藏的控制. 石油勘探与开发, 37(3): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003006.htm [44] 赵国欣, 2008. 烃源岩层中异常高压研究——以渤海湾盆地东营凹陷古近系为例. 石油实验地质, 30(4): 340-344. doi: 10.3969/j.issn.1001-6112.2008.04.004 [45] 郑和荣, 黄永玲, 冯有良, 2000. 东营凹陷下第三系地层异常高压及其石油地质意义. 石油勘探与开发, 27(4): 67-70. doi: 10.3321/j.issn:1000-0747.2000.04.016