• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    我国3种绿色图章石中白云母的矿物学特征

    陈涛 韩文 李甜 皱倩

    陈涛, 韩文, 李甜, 皱倩, 2012. 我国3种绿色图章石中白云母的矿物学特征. 地球科学, 37(5): 981-988. doi: 10.3799/dqkx.2012.106
    引用本文: 陈涛, 韩文, 李甜, 皱倩, 2012. 我国3种绿色图章石中白云母的矿物学特征. 地球科学, 37(5): 981-988. doi: 10.3799/dqkx.2012.106
    CHEN Tao, HAN Wen, LI Tian, Zhou Qian, 2012. Mineralogy Characterization of Muscovite in Three Kinds of Green Sealed Stones from China. Earth Science, 37(5): 981-988. doi: 10.3799/dqkx.2012.106
    Citation: CHEN Tao, HAN Wen, LI Tian, Zhou Qian, 2012. Mineralogy Characterization of Muscovite in Three Kinds of Green Sealed Stones from China. Earth Science, 37(5): 981-988. doi: 10.3799/dqkx.2012.106

    我国3种绿色图章石中白云母的矿物学特征

    doi: 10.3799/dqkx.2012.106
    基金项目: 

    国家自然科学基金 41172050

    国家自然科学基金 40702007

    中国博士后面上基金 20100480925

    详细信息
      作者简介:

      陈涛(1979-), 女, 博士, 副教授, 主要从事矿物学研究工作.E-mail: summerjewelry@163.com

    • 中图分类号: P575

    Mineralogy Characterization of Muscovite in Three Kinds of Green Sealed Stones from China

    • 摘要: 对我国浙江青田山炮绿、福建寿山月尾绿以及西安绿3种绿色图章石分别利用X射线衍射、电子探针、环境扫描电镜以及能谱分析对其矿物成分、化学成分、微形貌特征以及颜色成因等方面进行了研究.研究发现, 3种图章石的绿色部分均由具二八面体结构的2M1型多硅白云母组成, 属于云母型图章石; 它们的次要矿物组成中山炮绿含有白云石、黄铁矿和磷灰石, 月尾绿含有高岭石, 西安绿含有白云石, 次要矿物组成对绿色图章石的产地鉴定具有一定意义.3种白云母的微形貌特征揭示了西安绿中白云母结晶程度高于月尾绿中白云母, 而山炮绿中白云母经历热液蚀变后晶形不完整重结晶程度不高.另外, 白云母八面体层中杂质离子的化学成分分析表明, 月尾绿和西安绿中白云母的绿色是由Fe3+和Ti4+离子形成, 而山炮绿的翠绿颜色主要由白云母中Cr3+离子以及Fe3+、Ti4+离子共同作用形成.

       

    • 图  1  3种绿色图章石的X射线粉晶衍射

      Fig.  1.  X-ray powder diffraction pattern of three different green sealed stones

      图  2  3种图章石中白云母的形貌像

      a.山炮绿中白云母,b.月尾绿中白云母,c.西安绿中白云母

      Fig.  2.  Morphology of muscovites in three different green sealed stones

      表  1  3种绿色图章石的主要粉晶衍射数据

      Table  1.   The main data of X-ray powder diffraction of three different green sealed stones

      SPL YWL XAL
      2θ(°) d(Å) I/I0 Min hkl 2θ(°) d(Å) I/I0 Min hkl 2θ(°) d(Å) I/I0 Min hkl
      8.8917 9.9372 93 M 002 8.896 7 9.931 2 100 M 002 8.925 1 9.900 1 99 M 002
      17.798 8 4.979 3 38 M 004 12.443 8 7.107 2 14 K 001 17.882 4 4.956 2 52 M 004
      19.971 3 4.442 3 18 M 111 17.789 3 4.981 8 25 M 004 19.904 4 4.457 1 12 M 111
      20.756 7 4.275 9 8 M 111 19.927 5 4.451 8 12 M 111 20.673 2 4.293 0 5 M 111
      21.692 6 4.093 5 7 M 022 22.995 0 3.864 4 4 M 113 21.659 1 4.099 8 5 M 022
      22.996 0 3.864 4 16 M 113 23.884 2 3.722 5 5 M 023 22.962 6 3.869 9 10 M 113
      23.898 4 3.720 5 19 M 023 24.963 3 3.564 0 8 K 002 23.865 0 3.725 6 12 M 023
      25.569 6 3.481 0 19 M 114 25.562 8 3.481 7 5 M 114 25.586 3 3.478 7 17 M 114
      26.806 2 3.323 1 71 M 006 26.811 8 3.322 3 60 M 006 26.939 9 3.306 9 100 M 006
      27.925 9 3.192 4 20 M 114 27.900 9 3.195 0 7 M 114 27.942 6 3.190 5 21 M 114
      29.931 2 2.982 9 22 M 025 29.249 8 3.050 7 6 M 025 29.964 6 2.979 6 25 M 025
      30.984 0 2.883 9 100 D 104 29.919 2 2.984 0 5 M 025 31.351 7 2.850 9 17 M 115
      31.318 2 2.853 9 18 M 115 31.308 0 2.854 7 7 M 115 32.187 2 2.778 8 14 M 116
      32.087 0 2.787 2 14 M 116 35.084 9 2.555 5 10 M 131 34.576 9 2.592 0 7 M 131
      33.089 6 2.705 0 16 P 200 35.944 2 2.496 4 6 M 008 35.011 4 2.560 8 17 M 131
      34.710 6 2.582 3 10 M 131 36.633 6 2.451 0 3 M 008 36.164 5 2.481 8 8 M 008
      35.145 1 2.551 4 21 M 131 37.852 6 2.374 8 2 M 133 37.785 5 2.379 0 4 M 133
      35.980 7 2.494 0 21 D 110 40.250 6 2.238 7 3 M 220 42.464 7 2.127 0 7 M 135
      37.117 1 2.420 2 10 P 210 42.518 7 2.124 4 3 M 135 45.639 8 1.986 40 M 10(10)
      41.177 9 2.190 5 15 D/M 113/042 45.356 3 1.997 8 16 M 00(10) 53.042 9 1.725 1 3 M 139
      42.514 8 2.124 6 11 M 135 55.847 6 1.644 8 3 M 139 55.415 9 1.656 7 6 M 20(10)
      45.422 6 1.995 1 10 M/D 136/10(10) 61.912 5 1.497 5 5 M 060 55.933 9 1.642 6 10 M 139
      50.552 9 1.804 0 16 D 018 60.930 6 1.519 3 5 M 245
      51.104 4 1.785 9 14 D 116 1.716 0 1.501 8 5 M 060
      55.850 4 1.644 8 10 M 139
      56.318 3 1.632 3 14 P 311
      60.813 6 1.521 9 7 M 245
      61.966 7 1.496 3 10 M 060
      Min.矿物成分;M.白云母;D.白云石;P.黄铁矿;K.高岭石.
      下载: 导出CSV

      表  2  3种绿色图章石中白云母的晶胞参数数据

      Table  2.   Lattice parameters of muscovites in three different green sealed stones

      晶系 a(Å) b(Å) c(Å) β(°) V3)
      SPL 单斜 晶胞参数 5.169 4 8.988 4 20.053 9 96°2′ 926.634 8
      SPL 单斜 标准差 0.001 8 0.004 5 0.006 1 2′ 0.432 0
      YWL 单斜 晶胞参数 5.180 9 8.956 6 20.074 5 96°1′ 926.398 9
      YWL 单斜 标准差 0.003 9 0.010 6 0.013 1 4′ 0.980 9
      XAL 单斜 晶胞参数 5.182 2 9.028 2 19.975 3 95°46′ 929.849 0
      XAL 单斜 标准差 0.002 2 0.004 1 0.003 9 1′ 0.427 4
      下载: 导出CSV

      表  3  3种绿色图章石中主要矿物的化学成分(%)

      Table  3.   Chemical data of main minerals in three different green sealed stones

      Element SPL-1 SPL-2 SPL-3 SPL-4 YWL-1 YWL-2 YWL-3 XAL-1 XAL-2 XAL-4
      Na2O 0.287 0.282 0.068 - 0.071 0.121 0.108 0.098 0.131 -
      K2O 10.506 10.123 - - 9.352 9.718 10.115 10.906 10.923 -
      Cr2O3 0.067 0.027 - - - - - - - -
      MgO 0.324 0.247 0.046 17.943 0.093 0.067 0.086 4.916 5.392 22.047
      CaO 0.108 - 56.208 29.418 0.134 0.081 0.030 0.055 0.055 29.634
      MnO - - 0.130 0.116 - - - - 0.006 0.006
      Al2O3 36.734 34.607 0.007 0.065 33.677 34.390 35.051 25.159 25.300 0.033
      TiO2 0.222 0.261 0.060 0.078 0.050 0.026 0.034 0.124 0.229 0.019
      Fe2O3 0.282 0.218 0.054 4.520 1.797 1.663 1.544 0.012 0.028 0.051
      SiO2 48.207 46.506 0.077 0.048 50.508 48.739 47.825 52.520 52.551 0.017
      P2O5 - - 42.123 - - - - - - -
      Total 96.737 92.271 98.773 52.188 95.682 94.805 94.793 93.790 94.615 51.807
      Minerals 白云母 白云母 磷灰石 白云石 白云母 白云母 白云母 白云母 白云母 白云石
      下载: 导出CSV

      表  4  3种绿色图章石中白云母的化学分子式

      Table  4.   Chemical formula of muscovites in three different green sealed stones

      SPL-1 SPL-2 YWL-1 YWL-2 YWL-3 XAL-1 XAL-2
      Si 3.126 3.159 3.288 3.216 3.167 3.519 3.495
      [Ⅵ]Al 0.874 0.841 0.712 0.784 0.833 0.481 0.505
      [Ⅵ]Al 1.932 1.929 1.872 1.891 1.902 1.506 1.478
      Cr3+ 0.003 0.001 0.000 0.000 0.000 0.000 0.000
      Fe3+ 0.014 0.011 0.088 0.083 0.077 0.001 0.001
      Mg 0.031 0.025 0.009 0.007 0.008 0.491 0.535
      Ti 0.011 0.013 0.002 0.001 0.002 0.006 0.011
      Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000
      K 0.868 0.877 0.776 0.818 0.854 0.932 0.926
      Na 0.036 0.037 0.009 0.015 0.014 0.013 0.017
      Ca 0.008 0.000 0.009 0.006 0.002 0.004 0.004
      Cht 0.874 0.841 0.712 0.784 0.833 0.481 0.505
      Cho 0.045 0.072 0.092 0.061 0.039 0.472 0.446
      Chi 0.919 0.914 0.804 0.845 0.872 0.952 0.951
      vac(o) 1.008 1.020 1.028 1.019 1.011 0.996 0.974
      [Ⅵ]R2+/([Ⅵ]R2++[Ⅵ]R3+) 0.016 0.013 0.005 0.003 0.004 0.246 0.266
      [Ⅵ]Al/([Ⅵ]Al+[Ⅵ]Fe3+) 0.993 0.994 0.955 0.958 0.961 1.000 0.999
      Cht.四面体层总电荷;Cho.八面体层总电荷;Chi.层间总电荷;vac(o).八面体空位;[Ⅵ]R2+[Ⅵ]R3+分别表示八面体中二价阳离子和三价阳离子数.
      下载: 导出CSV

      表  5  3种绿色图章石中矿物的化学成分(%)

      Table  5.   Chemical data of minerals in three different green sealed stones

      O Na Mg Al Si Ca Fe K
      Fig 4a-SPL 51.01 0.89 0.98 18.97 21.21 - - 6.95
      Fig 4b-YWL 46.85 - - 19.18 24.31 - 1.45 8.21
      Fig 4c-XAL 42.45 - 4.66 12.96 30.41 - - 8.99
      下载: 导出CSV
    • [1] Bailey, S.W., 1984. Crystal chemistry of the true micas. In: Bailey, S.W., ed., Micas. Reviews in Mineralogy, 13: 13-60.
      [2] Brigatti, M.F., Frigieri, P., Poppi, L., 1998. Crystal chemistry of Mg-, Fe-bearing muscovites-2M1. American Mineralogist, 83(7-8): 775-785. doi: 0003-004X/98/0708-0775
      [3] Chen, T., 2004. A preliminary study of mineralogical and spectroscopic characteristics of Qingtian stone. Acta Petrologica et Mineralogica, 23(2): 186-192 (in Chinese with English abstract). doi: 1000-652(2004)02-0186-07
      [4] Chen, T., Wang, H.J., Mason, R., et al., 2010. HRTEM investigation of intralayer and interlayer stacking defects and pyrophyllite interlayers in illite. Mineralogical Magazine, 74(3): 451-461. doi: 10.1180/minmag.2010.074.3.451
      [5] Fan, G.M., Lei, D.N., 2007. Precise timing and significance of Caledonian structural deformation chronology in Southeast Qilian. Earth Science —Journal of China University of Geosciences, 32(1): 39-44 (in Chinese with English abstract). doi: 1000-2383(2007)01-0039-06
      [6] Fan, L.M., Mu, J.L., Liu, W.J., 1983. Muscovite rich in Fe2+ in wolfram and beryllium beasing quartz vein at Changhua, Zhejiang. Journal of Mineralogy and Petrology, 2: 31-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198302004.htm
      [7] Finch, J., Gainsford, A.R., Tennant, W.C., 1982. Polarized optical absorption and 57Fe Mössbauer study of pegmatitic muscovite. Amercian Mineralogist, 67(1-2): 59-68. doi: 0003-004X/82/0102-0059
      [8] Guo, Q.H., Zhou, Y.Z., Cao, S.M., et al., 2010. Study on mineralogy of Guangning jade. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49(3): 146-151 (in Chinese with English abstract). doi: 0529-6579(2010)03-0146-06
      [9] Li, G.L., Hua, R.M., Wei, X.L., et al., 2011. Rb-Sr isochron age of single-grain muscovite in the Xushan W-Cu deposit, central Jiangxi, and its geological significance. Earth Science —Journal of China University of Geosciences, 36(2): 282-288 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.029
      [10] Li, Z.Q., Mu, R., 2000. Materials and resources of Chinese signet stones. Mining and Technology in China, 9(4): 18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA200004009.htm
      [11] Lu, A.H., Chen, G.Y., 1995. Chromiferous sericitization in gold deposite and its significance for ore prospecting. Geology and Prospecting, 31(2): 32-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT502.006.htm
      [12] Lu, Q., Xu, T.J., Wu, R.H., et al., 2010. Study on gemological and mineralogical characteristics of three kinds of Qingtian stone from Zhejiang Province. Journal of Gems and Gemmology, 12(3): 14-18 (in Chinese with English abstract). doi: 1008-214X(2010)03-0014-05
      [13] Moore, D.M., Reynolds, R.C., 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York.
      [14] Pan, Z.L., 1994. Crystallography and mineralogy. Geological Publishing House, Beijing (in Chinese).
      [15] Rieder, M., Cavazzini, G., D'Yakonov, Y.S., et al., 1998. Nomenclature of the micas. The Canadian Mineralogist, 36: 905-912. http://ccm.geoscienceworld.org/content/46/5/586
      [16] Rossman, G.R., 1984. Spectrosocpy of micas. Reviews in Mineralogy, 13: 145-181.
      [17] Song, G.B., Guo, Y., Xiong, N., et al., 2000. Mineral resources of China muscovite and its mineralogy study and application. Journal of Southwest Institute of Technology, 15(2): 73-78 (in Chinese with English abstract). doi:1007-8916(2000) 02-0073-06
      [18] Tang, D.P., Zheng, Z.T., 1999. Mineralogy and gemmology of Shoushan stone. Journal of Gems and Gemmology, 1(4): 28-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB199904009.htm
      [19] Yang, Y.X., 1995. The main composition is dickite not pyrophyllite in "Sealed Stone". Building Geology, 79(3): 8-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LGFK199503002.htm
      [20] Ye, D., Zhao, X.G., Zou, Y., et al., 2010. Composition characteristics of Qiantian stone. Acta Petrologica et Mineralogica, 29(2): 219-224 (in Chinese with English abstract). doi: 1000-6524(2010)02-0219-06
      [21] 陈涛, 2004. 浙江青田石几个新品种的矿物学特征初步研究. 岩石矿物学杂志, 23(2): 186-192. doi: 10.3969/j.issn.1000-6524.2004.02.012
      [22] 樊光明, 雷东宁, 2007. 祁连山东南段加里东造山期构造变形年代的精确限定及其意义. 地球科学——中国地质大学学报, 32(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701004.htm
      [23] 范良明, 慕纪录, 刘文君, 1983. 浙江昌化含钨被石英脉中富Fe2+的白云母. 矿物岩石, 2: 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198302004.htm
      [24] 郭清宏, 周永章, 曹姝旻, 等, 2010. 广绿玉玉石的矿物学研究. 中山大学学报(自然科学版), 49(3): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201003030.htm
      [25] 李光来, 华仁民, 韦星林, 等, 2011. 江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义. 地球科学——中国地质大学学报, 36(2): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102014.htm
      [26] 李志群, 沐蕊, 2000. 中国印章石的材料与资源研究. 中国矿业, 9(4): 18-21. doi: 10.3969/j.issn.1004-4051.2000.04.004
      [27] 卢琪, 徐廷婧, 吴瑞华, 等, 2010. 三种浙江青田石的宝石矿物学特征研究. 宝石和宝石学杂志, 12(3): 14-18. doi: 10.3969/j.issn.1008-214X.2010.03.004
      [28] 鲁安怀, 陈光远, 1995. 金矿床中"绿化"——含铬绢云母化及其找矿意义. 地质与勘探, 31(2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT502.006.htm
      [29] 潘兆橹, 1994. 结晶学及矿物学. 北京: 地质出版社.
      [30] 宋功保, 郭颖, 熊宁, 等, 2000. 我国白云矿产资源矿物学研究及开发利用概况. 西南工学院学报, 15(2): 73-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX200002017.htm
      [31] 汤德平, 郑宗坦, 1999. 寿山石的矿物组成与宝石学研究. 宝石和宝石学杂志, 1(4): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199904009.htm
      [32] 杨雅秀, 1995. "图章石"的主要矿物成分为迪开石类矿物非叶腊石矿物. 建材地质, 79(3): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK199503002.htm
      [33] 业冬, 赵旭刚, 邹妤, 等, 2010. 青田石的矿物组成特征研究. 岩石矿物学杂志, 29(2): 219-224. doi: 10.3969/j.issn.1000-6524.2010.02.011
    • 加载中
    图(2) / 表(5)
    计量
    • 文章访问数:  297
    • HTML全文浏览量:  115
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-01-16
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2012-09-15

    目录

      /

      返回文章
      返回