Metallogenic Depth, Post-Mineralization Uplift and Denudation of Porphyry-Like Type Iron Deposits in Ningwu, Luzong Basins: Evidences from Apatite Fission Track
-
摘要: 矿床形成深度及成矿后的变化与保存是目前深部找矿亟待解决的关键问题.选取4个成矿年龄均为130 Ma左右的典型玢岩铁矿, 分别为宁芜盆地中矿体已经出露地表并经受过剥蚀的东山铁矿和矿体埋藏距地表 40 m以下的梅山铁矿, 庐枞盆地中矿体埋藏距地表400 m以下的罗河铁矿和矿体埋藏距地表600 m以下的泥河铁矿, 采用双重定年技术对这4个矿床主成矿阶段矿石矿物组合中的磷灰石进行了裂变径迹研究.结果显示: (1)东山铁矿AFT合并年龄为106.3±5.4 Ma, 梅山铁矿为94.2±4.0 Ma, 罗河铁矿为81.3±4.0 Ma, 泥河铁矿为79.1±3.3 Ma, 且AFT年龄和围限径迹长度随样品埋藏深度减小而增大, 分别更接近成矿年龄和原始径迹长度, 显示4个矿床成矿后差异抬升剥蚀作用导致磷灰石样品通过部分退火带时的冷却速率存在差别; (2)热史模拟反映这4个矿床成矿后均经历了早期短暂快速冷却和后期长期缓慢冷却2个阶段, 两阶段之间的拐点温度接近, 对应深度为1.7~1.8 km, 结合其他证据证明宁芜、庐枞盆地玢岩铁矿成矿深度均为2 km左右.说明这4个矿床现今埋藏深度的差异主要是由于成矿后的抬升、剥蚀作用导致.(3)自110 Ma以来宁芜盆地的整体抬升剥蚀幅度大于庐枞盆地, 导致宁芜盆地大部分玢岩铁矿矿体接近或暴露地表.2个盆地早期抬升剥蚀作用与区域性黄桥事件同步.Abstract: The metallogenic depth and post-mineralization uplift and denudation are the key issues in deep prospecting, which have been weak in the study of mineral deposits due to the absence of effective technology. The authors select Dongshan, Meishan porphyry-like iron deposits in Ningwu basin and Nihe, Luohe porphyry-like iron deposits in Luzong basin formed about ~130 Ma as the study subjects for the metallogenic depth and post-mineralization uplift and denudation of porphyry-like iron deposits, with the help of AFT analysis of apatites in ore mineral assemblages. The results suggest: (1) the pooled AFT ages(1σ) of the four deposits are 106.3±5.4 Ma, 94.2±4.0 Ma, 81.3±4.0 Ma and 79.1±3.3 Ma, respectively, showing the ore bodies of four deposits passed the PAZ successively. The AFT ages and confined track lengths decrease with the increase of buried depth of samples and become close to the mineralization ages and the initial confined track length, which are possibly controlled by diverse uplift and denudation after mineralization leading to the different cooling rates while the samples passed the PAZ. (2) The thermal histories of AFT modeling reflect that there are two different cooling stages, namely the rapid cooling progress caused by losing of heat source and the slow cooling progress caused by uplift. The temperature inflection points between the two stages of the four deposits are probably identical, corresponding to a depth of 1.7 to 1.8 km. (3) Since 110 Ma, the uplift and denudation rate of the Ningwu basin have been greater than those of Luzong basin, so that most ore deposits in Ningwu basin buried shallowly or even exposed to the surface. The early uplift and denudation were controlled by the regional Yellow Bridge tectonic event.
-
Key words:
- metallogenic depth /
- uplift /
- denudation /
- AFT /
- porphyry-like type iron deposit
-
图 3 泥河铁矿AP-1和罗河铁矿AP-4的AFT热历史模拟曲线
热历史图中,浅灰色围限区代表“可以接受的”热史拟合曲线集(GOF检验值>5%); 深灰色围限区代表“高质量的”热史模拟曲线集(GOF检验值>50%). 代表热史曲线中分段间拐点,热史模拟各赋予2个限制条件,底部限制条件由磷灰石最低形成温度、U-Pb年龄、40Ar-39Ar年龄限定,第二个限制条件由磷灰石退火温度和开始冷却年龄限定
Fig. 3. Thermal histories of AFT modeling of sample AP-1 from Nihe and sample AP-4 from Luohe iron deposit
表 1 泥河、罗河、梅山、东山铁矿磷灰石裂变径迹分析数据
Table 1. AFT data of Nihe, Luohe, Meishan, Dongshan iron deposits
样品号 样品性质 所属矿床 采样埋深(m) FT年龄(Ma, 1σ)
(25个颗粒合并)围限径迹长度(μm) Dpar均值(μm) AP-1 磁铁矿矿石 泥河铁矿 720 79.1±3.3 13.44±1.11(132条径迹平均) 2.10 AP-4 磁铁矿矿石 罗河铁矿 670 81.3±4.0 13.56±1.25(140条径迹平均) 2.18 MS303 磁铁矿矿石 梅山铁矿 320 94.2±4.0 14.14±1.17(150条径迹平均) 2.69 DAP-1 磁铁矿矿石 东山铁矿 120 106.3±5.4 14.78±1.04(195条径迹平均) 2.48 DAP-2 磁铁矿矿石 东山铁矿 100 106.9±5.7 14.80±1.03(201条径迹平均) 2.54 表 2 4个玢岩铁矿矿石AFT热史模拟分段特征
Table 2. Subsection characteristic of thermal histories of four porphyry iron deposits
样号 矿床 ①、②阶段间拐点温度/深度 冷却速率 AP-1 泥河铁矿 105 ℃/1.7 km ①7.5 ℃/Ma ②0.64℃/Ma 128 Ma→110 Ma 110 Ma→0 Ma 240 ℃→105 ℃ 105℃→35℃ AP-4 罗河铁矿 105 ℃/1.7 km ①8.44 ℃/Ma ②0.63℃/Ma 128 Ma→112 Ma 112 Ma→0 Ma 240 ℃→105 ℃ 105 ℃→35 ℃ MS303 梅山铁矿 110 ℃/1.8 km ①13.5 ℃/Ma ②0.69 ℃/Ma ③1.0 ℃/Ma ④0.5 ℃/Ma 123 Ma→113 Ma 113 Ma→55 Ma 55 Ma→30 Ma 30 Ma→0 Ma 240 ℃→105 ℃ 105 ℃→65 ℃ 65 ℃→40 ℃ 40 ℃→25 ℃ DAP-1 东山铁矿 105 ℃/1.7 km ①16.25 ℃/Ma ②1.78 ℃/Ma ③0.14 ℃/Ma 123 Ma→115 Ma 115 Ma→70 Ma 70 Ma→0 Ma 240 ℃→110 ℃ 110 ℃→30 ℃ 30 ℃→20 ℃ -
[1] Belton, D.X., Brown, R.W., Kohn, B.P., et al., 2004. Quantitative resolution of the debate over antiquity of the central Australian landscape: implications for the tectonic and geomorphic stability of cratonic interiors. Earth and Planetary Science Letters, 219(1-2): 21-34. doi: 10.1016/S0012-821X(03)00705-2 [2] Bernet, M., Garver, J.I., 2005. Fission-track analysis of detrital zircon. In: Reiners, P.W., Ehlers, T.A., eds., Low-temperature thermochronology: techniques, interpretations, and applications. RIMG, 58: 205-238. doi: 10.2138/rmg.2005.58.8 [3] Cao, X.Z., Sun, H.S., Xu, B.J., et al., 2008. Research on effective methods and approachs of rapid evaluation of potential concealed deposit(ore body) prospecting. China University of Geosciences Press, Wuhan, 26-30(in Chinese). [4] Carlson, W.D., Donelick, R.A., Ketcham, R.A., 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84(9): 1235-1255. doi: 10.2138/am-1999-0903 [5] Chakurian, A.M., Arehart, G.B., Donelick, R.A., et al., 2003. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track, 40Ar/39Ar, and apatite (U-Th)/He methods. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(6): 1159-1171. doi: 10.2113/gsecongeo.98.6.1159 [6] Chen, B.L., 2001. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics. Chinese Journal of Geology, 36(3): 380-384(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200103014.htm [7] Du, J.G., Chang, D.Y., 2011. Consideration on the deep-iron ore deposits prospecting in the middle-lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 687-698(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105008.htm [8] Ehlers, T. A., Chaudhri, T., Kumar, S., et al., 2005. Computational tools for low-temperature thermochronometer interpretation. In: Reiners, P.W., Ehlers, T.A., eds., Low-temperature thermochronology: techniques, interpretations, and applications. RIMG, 58: 589-622. doi: 10.2138/rmg.2005.58.22 [9] Fan, Y., Zhou, T.F., Yuan, F., et al., 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728(in Chinese with English abstract). [10] Fan, Y., Zhou, T.F., Yuan, F., et al., 2011. Geochronology of the porphyry-like type iron deposits in Ning-Wu basin: evidence from 40Ar/39Ar phlogopite dating. Acta Geologica Sinica, 85(5): 810-820(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105017.htm [11] Fu, Q.P., McInnes, B.I.A., Davies, P.J., 2004. Numerical modelling of thermal and exhumation histories of magmatic ore deposits. Earth Science—Journal of China University of Geosciences, 29(5): 555-562(in Chinese with English abstract). http://www.researchgate.net/publication/291741121_Numerical_modeling_of_thermal_and_exhumation_histories_of_magmatic_ore_deposits [12] Gleadow, A.J.W., Duddy, I.R., Green, P.F., 1986. Confined fission-track lengths in apatite: a diagnostic-tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4): 405-415. doi: 10.1007/BF00376334 [13] Ketcham, R.A., Carter, A., Donelick, R.A., et al., 2007a. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist, 92(5-6): 789-798. doi: 10.2138/am.2007.2280 [14] Ketcham, R.A., Carter, A., Donelick, R.A., et al., 2007b. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281 [15] Li, X.M., Gong, W.J., Tan, K.X., et al., 2001. Preliminary discussion on the geological characteristics and mineralogenetic epoch of Xiaogela copper deposit in Lanping basin. Journal of East China Geological Institute, 24(1): 17-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ200101004.htm [16] Liu, D.M., Li, D.W., Yang, W.R., et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan orogen during Late Cenozoic. Earth Science—Journal of China University of Geosciences, 30(2): 147-152 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200502003.htm [17] Liu, Z.J., Wang, J.P., Zheng, D.W., et al., 2010. Exploration prospect and post-ore denudation in the northwestern Jiaodong gold province, China: evidence from apatite fission track thermochronology. Acta Petrologica Sinica, 26(12): 3597-3611 (in Chinese with English abstract). [18] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid inclusion. Science Press, Beijing, 230-240 (in Chinese). [19] Lv, G.X., Liu, R.X., Wang, F.Z., et al., 2000. A method for estimating the depth of petrogenesis and metallogenesis. Journal of Geomechanics, 6(3): 50-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200003005.htm [20] Ma, C.Q., Yang, K.G., Tang, Z.H., et al., 1994. Magma-dynamics of granitoids—theory, method and a case study of the eastern Hubei granitoids. China University of Geosciences Press, Wuhan, 60-70(in Chinese). [21] Ma, F., Jiang, S.Y., Xue, H.M., 2010. Early Cretaceous mineralizations Ningwu basin: insight from actinolite 39Ar-40Ar laser dating results. Mineral Deposits, 29(2): 283-289 (in Chinese with English abstract). [22] Maksaev, V., Munizaga, F., Zentilli, M., et al., 2009. Fission track thermochronology of Neogene plutons in the principal Andean Cordillera of central Chile (33-35 degrees S): implications for tectonic evolution and porphyry Cu-Mo mineralization. Andean Geology, 36(2): 153-171. doi: 10.5027/andgeoV36n2-a01 [23] Marton, I., Moritz, R., Spikings, R., 2010. Application of low-temperature thermochronology to hydrothermal ore deposits: formation, preservation and exhumation of epithermal gold systems from the eastern Rhodopes, Bulgaria. Tectonophysics, 483(3-4): 240-254. doi: 10.1016/j.tecto.2009.10.020 [24] McInnes, B.I.A., Evans, N.J., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498. doi: 10.2138/rmg.2005.58.18 [25] McInnes, B.I.A., Farley, K.A., Sillitoe, R.H., et al., 1999. Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Economic Geology, 94(6): 937-947. doi: 10.2113/gsecongeo.94.6.937 [26] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science—Journal of China University of Geosciences, 35(2): 161-174 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.017 [27] Ning-Wu Research Project Writing Team, 1978. Porphyry-like type iron deposits in Ning-Wu basin. Geological Publishing House, Beijing, 87-162(in Chinese). [28] Qin, Y.J., Zeng, J.N., Zeng, Y., et al., 2010. Zircon LA-ICP-MS U-Pb dating of ore-bearing pyroxene-trachyandesite porphyry and its geological significance in Luohe-Nihe iron ore field in Luzong basin, southern Anhui, China. Geological Bulletin of China, 29(6): 851-862(in Chinese with English abstract). [29] Reiners, P.W., Ehlers, T.A., Zeitler, P.K., 2005. Past, present, and future of thermochronology. In: Reiners, P.W., Ehlers, T.A., eds., Low-temperature thermochronology: techniques, interpretations, and applications. RIMG, 58: 1-18. doi: 10.2138/rmg.2005.58.1 [30] Shen, C.B., Mei, L.F., Fan, Y.F., et al., 2005. Advances and prospects of apatite fission track thermochronology. Geological Science and Technology Information, 24(2): 57-63(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200502014.htm [31] Shen, C.B., Mei, L.F., Xu, Z.P., et al., 2007. Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountain, central China. Acta Petrologica Sinica, 23(11): 2901-2910 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711021.htm [32] Shen, C.B., Mei, L.F., Xu, S.H., 2009. Fission track dating of mesozoic sandstones and its tectonic significance in the eastern Sichuan basin, China. Radiation Measurements, 44(9-10): 945-949. doi: 10.1016/j.radmeas.2009.10.001 [33] Shi, X.B., Qiu, X.L., Liu, H.L., et al., 2006. Cenozoic cooling history of Lingcang granitoid batholith, western Yunnan: evidence from fission track data. Chinese Journal of Geophysics, 49(1): 135-142 (in Chinese with English abstract). doi: 10.1002/cjg2.820/full [34] Skinner, B.J., 1997. Hydrothermal mineral deposits: what we do and don't know. In: Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits(third edition). John Wiley & Sons, Inc., New York, 1-30. [35] Sun, F.Y., Jin, W., Li, B.L., et al., 2000. Consideration about mineralization depth of lode gold deposits. Journal of Changchun University of Science and Technology, 30: 27-30(in Chinese with English abstract). [36] Tang, Y.C., Wu, Y.C., Chu, G.Z., et al., 1998. Geology of copper-gold polymetallic deposits in the along-Changjiang area of Anhui Province. Geological Publishing House, Beijing, 45-85(in Chinese). [37] Tang, Y.H., Yuan, W.M., Han, C.M., et al., 2003. Fission track age of the Yuerya gold deposit. Acta Geoscientica Sinica, 24(6): 573-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306018.htm [38] Wang, J.P., Zhai, Y.S., Liu, J.J., et al., 2008. A new approach to post-ore change and preservation of ore deposits: fission track analysis. Advances in Earth Science, 23(4): 421-427(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200804012.htm [39] Wanger, G.A., Haute, V.D.P., 1992. Fission-track dating. Kulwer Academic Publishers, Dordrecht. [40] Wei, J.X., 1984. Characters of fluid inclusions and mechanism of mineralization alterations for the volcanic deposits in the Lujiang-Zongyang basin. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1: 40-56(in Chinese with English abstract). http://www.researchgate.net/publication/284581384_Characters_of_fluid_inclusions_and_mechanism_of_mineralization_alterations_for_the_volcanic_deposits_in_the_Lujiang-Zongyang_basin [41] Xu, C.H., Zhou, Z.Y., Chang, Y., et al., 2010. Genesis of Daba arcuate structural belt related to adjacent basement: constraints from fission-track and (U-Th)/He thermochronology. Sci. China (Series D), 40(12): 1684-1696(in Chinese with English abstract). [42] Xu, X.T., Yuan, W.M., Gong, Q.J., et al., 2010. The analysis of zircon fission track's ore-forming epoch in Shaquanzi copper-iron deposits, Xinjiang. China Mining Magazine, 19(4): 105-108(in Chinese with English abstract). http://www.researchgate.net/publication/284971002_The_analysis_of_zircon_fission_track's_ore-forming_epoch_in_Shaquanzi_copper-iron_deposits_Xinjiang [43] Yuan, W.M., Wang, S.C., Wang, L.F., 2000. Metallogenic thermal history of the Wulonggou gold deposits in East Kunlun Mountains in the light of fission track thermochronology. Acta Geoscientia Sinica, 21 (4): 389-395(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqxb200004008 [44] Yuan, W.M., Wang, S.C., Wang, L.F., 2001. Apatite and zircon fission track study on the mineralization age and its thermal history of Nanliang gold deposits, eastern Hebei, China. Acta Mineralogica Scinica, 21(2): 225-230(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200102020.htm [45] Yu, J.J., Mao, J.W., 2002. 40Ar-39Ar albite dating and significance of the Porphyry-like type iron deposits in Ning-Wu basin. Progress in Natural Science, 12(10): 1059-1063 (in Chinese with English abstract). [46] Zhai, Y.S., Deng, J., Peng, R.M., 2000. Research contents and methods for post-ore changes, modifications and preservation. Earth Science—Journal of China University of Geosciences, 25(4): 340-345 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200004001.htm [47] Zhai, Y.S., Deng, J., Wang, J.P., et al., 2004. Researches on deep ore prospecting. Mineral Deposits, 23(2): 142-149(in Chinese with English abstract). http://www.researchgate.net/publication/292798938_Researches_on_deep_ore_prospecting [48] Zhang, D.H., Zhou, S.H., Wan, T.F., et al., 2007. Depth of ore deposit formation and prognosis deep-seated ore deposits. Geological Bulletin of China, 26(12): 1509-1518(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200712002.htm [49] Zhang, D.H., Xu, J.H., Yu, X.Q., et al., 2011. The diagenetic and metallogenic depth: main constraints and the estimation methods. Geological Bulletin of China, 30(1): 112-125(in Chinese with English abstract). http://www.researchgate.net/publication/281080318_The_diagenetic_and_metallogenic_depth_main_constriants_and_the_estimation_methods [50] Zhang, P., Zhou, Z.Y., Xu, C.H., 2009. Thermo-tectonic history of the Lower Yangtze area since Late Cretaceous: evidence from apatite fission track analysis of sandstones from Pukou Formation. Offshore Oil, 29(4): 26-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200904006.htm [51] Zhang, Y.H., 1991. Huangqiao transform event in tectonic evolution of Lower Yangtze region and the Meso-Paleozoic hydrocarbon exploration target. Oil & Gas Geology, 12(4): 439-448(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT199104009.htm [52] Zhao, W.G., Wu, M.A., Zhang, Y.Y., et al., 2011. Geological Characteristics and genesis of the Nihe Fe-S deposit, Lujiang Country, Anhui Province. Acta Geologica Sinica, 85(5): 789-801(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105015.htm [53] Zhou, T.F., Fan, Y., Yuan, F., et al., 2011. Petrogensis and metallogeny study of the volcanic basins in the middle and Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 712-730(in Chinese with English abstract). http://www.researchgate.net/publication/285443329_Petrogensis_and_metallogeny_study_of_the_volcanic_basins_in_the_Middle_and_Lower_Yangtze_metallogenic_belt [54] 曹新志, 孙华山, 徐伯俊, 等, 2008. 隐伏矿床(体)找矿前景快速评价的有效方法与途径研究. 武汉: 中国地质大学出版社, 26-30. [55] 陈柏林, 2001. 从成矿构造动力学探讨脉状金矿床成矿深度. 地质科学, 36(3): 380-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103014.htm [56] 杜建国, 常丹燕, 2011. 长江中下游成矿带深部铁矿找矿的思考. 地质学报, 85(5): 687-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105008.htm [57] 范裕, 周涛发, 袁峰, 等, 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义. 岩石学报. 26(9): 2715-2728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009017.htm [58] 范裕, 周涛发, 袁峰, 等, 2011. 宁芜盆地玢岩型铁矿床的成矿时代: 金云母40Ar-39Ar同位素年代学研究. 地质学报, 85(5): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105017.htm [59] 傅清平, McInnes, B.I.A., Davies, P.J., 2004. 岩浆成矿体系的热演化和剥露史的数字模拟. 地球科学——中国地质大学学报, 29(5): 555-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405008.htm [60] 李小明, 龚文君, 谭凯旋, 等, 2001. 兰坪盆地小格拉铜矿床地质特征及成矿时代初探. 华东地质学院学报, 24(1): 17-18. doi: 10.3969/j.issn.1674-3504.2001.01.005 [61] 刘德明, 李德威, 杨巍然, 等, 2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据. 地球科学——中国地质大学学报, 30(2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200502003.htm [62] 柳振江, 王建平, 郑德文, 等, 2010. 胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据. 岩石学报, 26(12): 3597-3611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012013.htm [63] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 230-240. [64] 吕古贤, 刘瑞珣, 王方正, 等, 2000. 成岩成矿深度构造校正测算和实测. 地质力学学报, 6(3): 50-62. doi: 10.3969/j.issn.1006-6616.2000.03.006 [65] 马昌前, 杨坤光, 唐仲华, 等, 1994. 花岗岩类岩浆动力学: 理论方法及鄂东南花岗岩类例析. 武汉: 中国地质大学出版社, 60-70. [66] 马芳, 蒋少湧, 薛怀民, 2010. 宁芜盆地凹山和东山铁矿床中阳起石的激光39Ar-40Ar年代学研究. 矿床地质, 29(2): 283-289. doi: 10.3969/j.issn.0258-7106.2010.02.009 [67] 梅廉夫, 刘昭茜, 汤济广, 等, 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学——中国地质大学学报, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm [68] 宁芜研究项目编写小组, 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 87-162. [69] 覃永军, 曾键年, 曾勇, 等, 2010. 安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(6): 851-862. doi: 10.3969/j.issn.1671-2552.2010.06.007 [70] 沈传波, 梅廉夫, 凡元芳, 等, 2005. 磷灰石裂变径迹热年代学研究的进展与展望. 地质科技情报, 24(2): 57-63. doi: 10.3969/j.issn.1000-7849.2005.02.011 [71] 沈传波, 梅廉夫, 徐振平, 等, 2007. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901-2910. doi: 10.3969/j.issn.1000-0569.2007.11.020 [72] 施小斌, 丘学林, 刘海龄, 等, 2006. 滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据. 地球物理学报, 49(1): 135-142. doi: 10.3321/j.issn:0001-5733.2006.01.019 [73] 孙丰月, 金巍, 李碧乐, 等, 2000. 关于脉状热液金矿床成矿深度的思考. 长春科技大学学报, 30(增刊): 27-30. [74] 唐永成, 吴言昌, 储国证, 等, 1998. 安徽沿江地区铜多金属矿床地质. 北京: 地质出版社, 45-85. [75] 汤云晖, 袁万明, 韩春明, 等, 2003. 峪耳崖金矿的成矿时代裂变径迹研究. 地球学报, 24(6): 573-578. doi: 10.3321/j.issn:1006-3021.2003.06.018 [76] 王建平, 翟裕生, 刘家军, 等, 2008. 矿床变化与保存研究的裂变径迹新途径. 地球科学进展, 23(4): 421-427. doi: 10.3321/j.issn:1001-8166.2008.04.012 [77] 魏佳秀, 1984. 卢枞盆地火山岩矿床流体包裹体研究及矿化蚀变机理. 中国地质科学院矿床地质研究所所刊, 1: 40-56. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198400009006.htm [78] 徐长海, 周祖翼, 常远, 等, 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684-1696. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012006.htm [79] 徐晓彤, 袁万明, 龚庆杰, 等, 2010. 利用裂变径迹定年分析新疆沙泉子铜铁矿成矿时代. 中国矿业, 19(4): 105-108. doi: 10.3969/j.issn.1004-4051.2010.04.030 [80] 袁万明, 王世成, 王兰芬, 2000. 东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据. 地球学报, 21 (4): 389-395. doi: 10.3321/j.issn:1006-3021.2000.04.008 [81] 袁万明, 王世成, 王兰芬, 2001. 裂变径迹分析法研究河北南梁金矿床成矿时代及其热历史. 矿物学报, 21(2): 225-230. doi: 10.3321/j.issn:1000-4734.2001.02.020 [82] 余金杰, 毛景文, 2002. 宁芜玢岩铁矿钠长石40Ar-39Ar定年及意义. 自然科学进展, 2(10): 1059-1063. doi: 10.3321/j.issn:1002-008X.2002.10.010 [83] 翟裕生, 邓军, 彭润民, 2000. 矿床变化与保存的研究内容和研究方法. 地球科学——中国地质大学学报, 25(4): 340-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004001.htm [84] 翟裕生, 邓军, 王建平, 等, 2004. 深部找矿研究问题. 矿床地质, 23(2): 142-149. doi: 10.3969/j.issn.0258-7106.2004.02.003 [85] 张德会, 周圣华, 万天丰, 等, 2007. 矿床形成深度与深部成矿预测. 地质通报, 26(12): 1509-1518. doi: 10.3969/j.issn.1671-2552.2007.12.002 [86] 张德会, 徐九华, 余心起, 等, 2011. 成岩成矿深度: 主要影响因素与压力估算方法. 地质通报, (1): 112-125. doi: 10.3969/j.issn.1671-2552.2011.01.012 [87] 张沛, 周祖翼, 许长海, 2009. 苏皖下扬子区晚白垩世以来的构造-热历史: 浦口组砂岩磷灰石裂变径迹证据. 海洋石油, 29(4): 26-32. doi: 10.3969/j.issn.1008-2336.2009.04.026 [88] 张永鸿, 1991. 下扬子区构造演化中的黄桥转换事件与中、古生界油气勘探方向. 石油与天然气地质, 12(4): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199104009.htm [89] 赵文广, 吴明安, 张宜勇, 等, 2011. 安徽省庐江县泥河铁硫矿床地质特征及成因初步分析. 地质学报. 85(5): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105015.htm [90] 周涛发, 范裕, 袁峰, 等, 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730. doi: 10.3969/j.issn.1004-9665.2011.05.011