• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Walker型28 GPa多面砧压机及其在地球科学中的应用

    张艳飞 吴耀 刘鹏雷 王雁宾 王超 金振民

    张艳飞, 吴耀, 刘鹏雷, 王雁宾, 王超, 金振民, 2012. Walker型28 GPa多面砧压机及其在地球科学中的应用. 地球科学, 37(5): 955-965. doi: 10.3799/dqkx.2012.104
    引用本文: 张艳飞, 吴耀, 刘鹏雷, 王雁宾, 王超, 金振民, 2012. Walker型28 GPa多面砧压机及其在地球科学中的应用. 地球科学, 37(5): 955-965. doi: 10.3799/dqkx.2012.104
    ZHANG Yan-fei, WU Yao, LIU Peng-lei, WANG Yan-bin, WANG Chao, JIN Zhen-min, 2012. Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences. Earth Science, 37(5): 955-965. doi: 10.3799/dqkx.2012.104
    Citation: ZHANG Yan-fei, WU Yao, LIU Peng-lei, WANG Yan-bin, WANG Chao, JIN Zhen-min, 2012. Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences. Earth Science, 37(5): 955-965. doi: 10.3799/dqkx.2012.104

    Walker型28 GPa多面砧压机及其在地球科学中的应用

    doi: 10.3799/dqkx.2012.104
    基金项目: 

    地壳探测工程 Sinoprobe-0801

    国家自然科学基金项目 41002068

    国家自然科学基金项目 41174076

    中国地质大学优秀青年教师资助项目 CUGL090204

    详细信息
      作者简介:

      张艳飞(1986-), 博士, 主要从事实验岩石学及高温高压相变实验研究

      通讯作者:

      吴耀, E-mail: ywu@cug.edu.cn; wuyao.earth@yahoo.com.cn

    • 中图分类号: P589

    Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences

    • 摘要: 高温高压实验是除地球物理和地球化学方法之外, 研究地球深部物质和性质的重要手段之一.多面砧压机是广泛使用的高温高压实验设备, 主要用来研究上地幔温压范围内的实验岩石学和矿物相变动力学等问题.主要介绍中国地质大学(武汉)地球深部研究实验室新引进的Walker型28 GPa多面砧压机的原理和结构、压力标定方法和常用的压力标定材料, 并根据金属铋在2.55和7.7 GPa(25 ℃)的结构相变, 以及石英在3.2 GPa、1 200 ℃向柯石英的转变对多面砧压机18/12装置(八面体传压介质边长/碳化钨截角边长)进行了压力标定, 该装置可实现的最高压力和温度约为8 GPa和2 000 ℃.最后还探讨了高温高压实验在地球科学中的应用.

       

    • 图  1  1 000吨多面砧压机walker型高压腔示意

      Fig.  1.  Cross section of the pressure chamber of 1 000-ton multi-anvil press

      图  2  二级压砧组装示意(a)与18/12装置样品组合示意(b)

      Fig.  2.  The schematic diagram of tungsten carbide assembly (a) and cross section of 18/12 heating assembly

      图  3  多面砧压机18/12装置室温压力标定样品组装示意

      Fig.  3.  Cross section of the 18/12 sample assembly for pressure calibration at room temperature

      图  4  室温下压力标定过程中Bi电阻变化曲线

      在加载过程中Bi的电阻逐渐减小且在A、B位置有电阻的突变,这是分别是由Bi(Ⅰ-Ⅱ)和Bi(Ⅲ-Ⅴ)相变引起的;卸载过程中在A1点出现了电阻突变,该处电阻突变是由Bi(Ⅱ-Ⅰ)相变造成,由于摩擦力的影响导致同一相变对应的负载在加载和卸载过程中不同

      Fig.  4.  Typical behavior of the Bi Ⅰ-Ⅱ and Bi Ⅲ-Ⅴ transitions at room temperature. The resistance mutations reflect the structure transitions points of Bi

      图  5  高温压力标定实验产物(石英、柯石英)拉曼光谱图

      Fig.  5.  Raman spectrum of experimental results of pressure calibration at high temperature

      图  6  多面砧压机18/12装置压力标定曲线

      Fig.  6.  Pressure calibration curve of 18/12 assembly obtained at room temperature and high temperature

      图  7  橄榄石高压相变和地幔地震波不连续面关系

      (a)图中PREM和AK135为地震波速度剖面,pyrolite和piclogite为两种不同的理论地幔岩石成分(据Irifune et al., 2008).橄榄石高压相图据Fei and Bertka(1999)

      Fig.  7.  High pressure phase diagram of olivine and its bearing in the origin of seismic discontinuities in the mantle

      表  1  室温压力标定常用材料及相变类型和压力(Ito, 2007)

      Table  1.   Some phase transitions as pressure calibrants at room temperature

      压力(GPa) 温度(℃) 材料 相变类型 标定方法 文献
      2.55 25 Bi Ⅰ → Ⅱ 电阻变化 Bean et al., 1986
      7.7 25 Bi Ⅲ → Ⅴ 电阻变化 Bean et al., 1986
      15.6 25 ZnS 半导体→导体 电阻变化 Block, 1978
      18.3 25 GaAs 半导体→导体 电阻变化 Suzuki et al., 1981
      22 25 GaP 半导体→导体 电阻变化 Piermarini and Block, 1975
      下载: 导出CSV

      表  2  高温压力标定常用材料及其相变类型和压力(Ito, 2007)

      Table  2.   Some phase transitions as pressure calibrants at high temperature

      压力(GPa) 温度(℃) 材料 相变类型 标定方法 文献
      3.2 1 200 SiO2 石英→柯石英 淬火/ 可逆 Bose and Ganguly, 1995
      4.8~5.8 800~1 200 Fe2SiO4 α→γ 原位X射线衍射 Yagi et al., 1987
      6.2~5.9 900~1 200 CaGeO3 石榴石→钙钛矿 原位X射线衍射 Susaki et al., 1985
      8.7~10.1 1 300~1 530 SiO2 柯石英-斯石英 原位X射线衍射 Zhang et al., 1996
      12.2~14.3 1 000~1 400 Mg2SiO4 α→β 原位X射线衍射 Morishima et al., 1994
      14.2~15.5 1 300~1 600 Mg2SiO4 α→β 原位X射线衍射 Katsura et al., 2004
      16.5 1 400 MgSiO3 辉石→β+斯石英 淬火 Gasparik, 1989
      15.7→17.4 800~1 000 Mg2SiO4 β→γ 原位X射线衍射 Suzuki et al., 2000
      19→20.8 1 200~1 600 Mg2SiO4 β→γ 淬火 Katsura and Ito, 1989
      24.8→23.1 1 000~1 600 Mg2SiO4 γ→钙钛矿+方镁石 淬火 Ito and Takahashi, 1989
      下载: 导出CSV

      表  3  金属铋结构相变引起的体积和电阻的相对改变量及对应的压力(Yoneda and Endo, 1980)

      Table  3.   Relative changes in volume and resistance of bismuth caused by structure transitions

      Bi Ⅰ-Ⅱ Bi Ⅱ-Ⅲ Bi Ⅲ-Ⅴ
      体积相对改变量(ΔV/V) 1 0.69% 0.32%
      电阻相对改变量(ΔR/R) 1 0.77% 0.23%
      对应压力(GPa) 2.55 2.7 7.7
      下载: 导出CSV

      表  4  高温压力标定实验条件和结果

      Table  4.   Experimental conditions and results of high temperature pressure calibration

      实验编号 负载(psi) 温度(℃) 时间(h) 起始物质 产物
      R004 1 400 1 200 1.5 SiO2 柯石英
      R006 1 200 1 200 1.5 SiO2 石英
      R007 1 300 1 200 1.5 SiO2 柯石英
      注:1psi=6.895 kPa.
      下载: 导出CSV
    • [1] Ai, Y.S., Zheng, T.Y., Xu, W.W., et al., 2003. A complex 660 km discontinuity beneath Northeast China. Earth and Planetary Science Letters, 212: 63-71. doi: 10.1016/S0012-821X(03)00266-8
      [2] Aubaud, C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31, L20611. doi: 10.1029/2004GL021341
      [3] Bean, V.E., Akimoto, S., Bell, P.M., et al., 1986. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B&C, 139-140: 52-54. doi: 10.1016/0378-4363(86)90521-8
      [4] Birch, F., 1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2): 227-286. doi: 10.1029/JZ057i002p00227
      [5] Block, S., 1978. Round-robin study of the high pressure phase transition in ZnS. Acta Crystallographica, A34(Suppl. ): 316.
      [6] Bose, K., Ganguly, J., 1995. Quartz-coesite transition revisited; reversed experimental determination at 500-1 200 degrees C and retrieved thermochemical properties. American Mineralogist, 80(3-4): 231-238. doi: 10.2138/am-1995-3-404
      [7] Dasgupta, R., Hirschmann, M.M., 2006. Melting in the earth's deep upper mantle caused by carbon dioxide. Nature, 440: 659-662. doi: 10.1038/nature04612
      [8] Deuss, A., Woodhouse, J., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in earth's mantle. Science, 294(5541): 354-357. doi: 10.1126/science.1063524
      [9] Evans, R.L., Tarits, P., Chave, A.D., et al., 1999. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science, 286: 752-756. doi: 10.1126/science.286.5440.752
      [10] Fei, Y.W., 2002. Phase transition in the earth's mantle and mantle mineralogy. In: Zhang, Y.X., Yin, A., eds., Structure, evolution and dynamics and the earth. High Education Press, Beijing, 49-90 (in Chinese).
      [11] Fei, Y., Bertka, C.M., 1999. Phase transitions in the Earth's mantle and mantle mineralogy. In: Fei, Y., Bertka, C.M., Mysen, B.O., eds., Mantle petrology: field observations and high pressure experimentation. Mysen, Spec. Publ., 6: 189-207.
      [12] Fei, Y., Van Orman, J., Li, J., et al., 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109, B02305, doi: 10.1029/2003JB002562
      [13] Frost, D.J., Poe, B.T., Trønnes, R.G., et al., 2004. A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144: 507-514. doi: 10.1016/j.pepi.2004.03.003
      [14] Gasparik, T., 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102(4): 389-405. doi: 10.1007/BF00371083
      [15] Gasparik, T., 1990. Phase relations in the transition zone. Journal of Geophysical Research, 15(B10): 15751-15769. doi: 10.1029/JB095iB10p15751
      [16] Getting, I.C., 1998. New determination of the bismuth Ⅰ-Ⅱ equilibrium pressure: a proposed modification to the practical pressure scale. Metrologia, 35: 119-132. doi: 10.1088/0026-1394/35/2/7
      [17] Gu, Y.J., Lerner-Lam, A.L., Dziewonski, A.M., et al., 2005. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth and Planetary Science Letters, 232(3-4): 259-272. doi: 10.1016/j.epsl.2005.01.019
      [18] Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451: 814-817. doi: 10.1038/nature06551
      [19] Irifune, T., Ringwood, A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science Letters, 117(1-2): 101-110. doi: 10.1016/0012-821X(93)90120-X
      [20] Irifune, T., Ringwood, A.E., Hibberson, W.O., 1994. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126(4): 351-368. doi: 10.1016/0012-821X(94)90117-1
      [21] Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986. The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2): 245-256. doi: 10.1016/0012-821X(86)90165-2
      [22] Ito, E., 2007. Theory and practice-multianvil cells and high-pressure experimental methods. Treatise on Geophysics, 2: 197-229. doi: 10.1016/B978-044452748-6/00036-5
      [23] Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8): 10637-10646. doi: 10.1029/JB094iB08p10637
      [24] Jin, Z.M., 1997. The progress and perspectives of high-T and high-P experimental study in China. Chinese Journal of Geophysics, 40(Suppl. I): 70-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1997S1008.htm
      [25] Katsura, T., Ito, E., 1989. The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: precise determination of stability of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94(B11): 15663-15670. doi: 10.1029/JB094iB11p15663
      [26] Katsura, T., Yamada, H., Nishikawa, O., et al., 2004. Olivine-wadsleyite transformation in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109(B02209). doi: 10.1029/2003JB002438
      [27] Kawai, N., Endo, S., 1970. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments, 41: 1178-1181. doi: 10.1063/1.1684753
      [28] Kawai, N., Togaya, M., Onodera, A., 1973. A new device for pressure-vessels. Proceedings of the Japan Academy, 8: 623-626. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Proceedings%20of%20the%20Japan%20Academy&atitle=A%20New%20Device%20for%20Pressure%20Vessels
      [29] Kind, R., Li, X., 2007. Deep earth structure-transition zone and mantle discontinuities. Treatise on Geophysics, 1: 591-618. doi: 10.1016/B978-044452748-6/00020-1
      [30] Liu, L., Zhang, J.F., Green, H.W., et al., 2007. Evidence of former stishovite in metamorphosed sediments: implying subduction to >350 km. Earth and Planetary Science Letters, 263(3-4): 180-191. doi: 10.1016/j.epsl.2007.08.010
      [31] Lloyd, E.C., 1971. Accurate characterization of the high-pressure environment. NBS Spec. Publ. , 326: 1-3. http://www.researchgate.net/publication/236365649_Accurate_Characterization_of_the_High-Pressure_Environment
      [32] McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. doi: 10.1016/j.epsl.2005.02.005
      [33] Morishima, H., Kato, T., Suto, M., et al., 1994. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science, 265(5176): 1202-1203. doi: 10.1126/science.265.5176.1202
      [34] Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87(4): 454-461. doi: 10.2138/am-2002-0409
      [35] Ohtani, E., Irifune, T., Hibberson, W.O., et al., 1987. Modified split-sphere guide block for practical operation of a multiple-anvil apparatus. High Temperatures-High Pressures, 19: 523-529. http://www.researchgate.net/publication/279621765_MODIFIED_SPLIT-SPHERE_GUIDE_BLOCK_FOR_PRACTICAL_OPERATION_OF_A_MULTIPLE-ANVIL_APPARATUS
      [36] Ono, S., Ohishi, Y., Isshiki, M., Watanuki, T., 2005. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208. doi: 10.1029/2004JB003196
      [37] Piermarini, G.J., Block, S., 1975. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Reviews of Scientific Instruments, 46: 973-980. doi: 10.1063/1.1134381
      [38] Saikia, A., Frost, D.J., Rubie, D.C., 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869): 1515-1518. doi: 10.1126/science.1152818
      [39] Sawamoto, H., 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2 200 ℃: phase stability and properies of tetragonal garnet. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 209-219. doi: 10.1029/GM039p0209
      [40] Shearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520 km discontinuity. Nature, 344: 121-126. doi: 10.1038/344121a0
      [41] Shearer, P.M., 2000. Upper mantle seismic discontinuities. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph). American Geophysical Union, Washington DC, 115-128.
      [42] Sleep, N.H., Zahnle, K., 2001. Carbon dioxide cycling and implications for climate on ancient earth. Journal of Geophysical Research, 106(E1): 1373-1399. doi: 10.1029/2000JE001247
      [43] Susaki, J., Akaogi, M., Akimoto, S., et al., 1985. Garnet-perovskite transformation in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12(10): 729- 732. doi: 10.1029/GL012i010p00729
      [44] Suzuki, A., Ohtani, E., Morishima, H., 2000. In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophysical Research Letters, 27(6): 803-805. doi: 10.1029/1999GL008425
      [45] Suzuki, T., Yagi, T., Akimoto, S., 1981. Precise determination of transition pressure of GaAs. Abstr. 22nd High Pressure, Conf. Japan, 8-9.
      [46] Takahashi, E., 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91(B9): 9367-9382. doi: 10.1029/JB091iB09p09367
      [47] Takahashi, E., Ito, E., 1987. Mineralogy of mantle peridotite along a model geotherm up to 700 km depth. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 427-437. doi: 10.1029/GM039p0427
      [48] Walker, D., Carpenter, M.A., Hitch, C.M., 1990. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist, 75(9-10): 1020-1028. http://www.researchgate.net/publication/279903818_Some_Simplifications_to_Multianvil_Devices_for_High_Pressures_Experiments
      [49] Wang, Y.B., 2006. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of earth materials: under high pressure and temperature. Earth Science Frontiers, 13(2): 1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602001.htm
      [50] Weidner, D.J., Wang, Y., 2000. Phase transformations: implications for mantle structure. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 117: 215-235. doi: 10.1029/GM117p0215
      [51] Wu, Y., Fei, Y.W., Jin, Z.M., et al., 2009. The fate of subducted upper continental crust: an experimental study. Earth and Planetary Science Letters, 282(1-4): 275-284. doi: 10.1016/j.epsl.2009.03.028
      [52] Wu, Y., Wang, Y.B., Zhang, Y.F., et al., 2012, An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chinese Science Bulletin, 57(8): 894-901. doi: 10.1007/s11434-011-4884-2
      [53] Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research, 92(B7): 6207-6213. doi: 10.1029/JB092iB07p06207
      [54] Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research, 99(B5): 9401-9414. doi: 10.1029/93JB03205
      [55] Ye, K., Cong, B.L., Ye, D.N., 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
      [56] Yoneda, A., Endo, S., 1980. Phase transition in barium and bismuth under high pressure. Journal of Applied Physics, 51(6): 3216-3221. doi: 10.1063/1.328076
      [57] Zhang, J.Z., Li, B.S., Utsumi, W., et al., 1996. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23(1): 1-10. doi: 10.1007/BF00202987
      [58] Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005. Relict coesite exsolution in omphacite from western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186. doi: 10.2138/am.2005.1587
      [59] Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010. Mantle transition zone: an important field in the studies of earth's deep interior. Earth Science Frontiers, 17(3): 90-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201003010.htm
      [60] 费英伟, 2002. 地幔中的相变和地幔矿物学. 见: 张有学, 尹安, 主编. 地球的结构、演化和动力学. 北京: 高等教育出版社, 49-90.
      [61] 金振民, 1997. 我国高温高压实验研究和展望. 地球物理学报, 40 (增刊I): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1008.htm
      [62] 王雁宾, 2006. 地球内部物质性质的原位高温高压研究: 大体积压机与同步辐射源的结合. 地学前缘, 13(2): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602001.htm
      [63] 周春银, 金振民, 章军锋, 2010. 地幔转换带: 地球深部研究的重要方向. 地学前缘, 17(3): 90-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  305
    • HTML全文浏览量:  127
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-04-03
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2012-09-15

    目录

      /

      返回文章
      返回