Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences
-
摘要: 高温高压实验是除地球物理和地球化学方法之外, 研究地球深部物质和性质的重要手段之一.多面砧压机是广泛使用的高温高压实验设备, 主要用来研究上地幔温压范围内的实验岩石学和矿物相变动力学等问题.主要介绍中国地质大学(武汉)地球深部研究实验室新引进的Walker型28 GPa多面砧压机的原理和结构、压力标定方法和常用的压力标定材料, 并根据金属铋在2.55和7.7 GPa(25 ℃)的结构相变, 以及石英在3.2 GPa、1 200 ℃向柯石英的转变对多面砧压机18/12装置(八面体传压介质边长/碳化钨截角边长)进行了压力标定, 该装置可实现的最高压力和温度约为8 GPa和2 000 ℃.最后还探讨了高温高压实验在地球科学中的应用.Abstract: High temperature and high pressure (HTHP) experiments is an important approach to study the nature of earth's deep interior. Multi-anvil press is widely used investigating phase transitions and mineral physics under the upper mantle conditions. The pressure calibration of the 18/12 (Octahedron Edge length/Truncated Edge Length) sample assembly for the multi-anvil press installed in China university of geosciences are summarized in this paper. Pressures for the 18/12 assembly were calibrated using phase transitions in bismuth at 2.55 GPa (Ⅰ-Ⅱ), and 7.7 GPa (Ⅲ-Ⅴ) at room temperature, and using quartz /coesite phase transition at 3.2 GPa and 1 200 ℃. This assembly can cover a pressure and temperature range up to 8 GPa and 2 000 ℃. Finally, the applications of HT-HP experiment in geosciences are also briefly discussed.
-
图 4 室温下压力标定过程中Bi电阻变化曲线
在加载过程中Bi的电阻逐渐减小且在A、B位置有电阻的突变,这是分别是由Bi(Ⅰ-Ⅱ)和Bi(Ⅲ-Ⅴ)相变引起的;卸载过程中在A1点出现了电阻突变,该处电阻突变是由Bi(Ⅱ-Ⅰ)相变造成,由于摩擦力的影响导致同一相变对应的负载在加载和卸载过程中不同
Fig. 4. Typical behavior of the Bi Ⅰ-Ⅱ and Bi Ⅲ-Ⅴ transitions at room temperature. The resistance mutations reflect the structure transitions points of Bi
图 7 橄榄石高压相变和地幔地震波不连续面关系
(a)图中PREM和AK135为地震波速度剖面,pyrolite和piclogite为两种不同的理论地幔岩石成分(据Irifune et al., 2008).橄榄石高压相图据Fei and Bertka(1999)
Fig. 7. High pressure phase diagram of olivine and its bearing in the origin of seismic discontinuities in the mantle
表 1 室温压力标定常用材料及相变类型和压力(Ito, 2007)
Table 1. Some phase transitions as pressure calibrants at room temperature
压力(GPa) 温度(℃) 材料 相变类型 标定方法 文献 2.55 25 Bi Ⅰ → Ⅱ 电阻变化 Bean et al., 1986 7.7 25 Bi Ⅲ → Ⅴ 电阻变化 Bean et al., 1986 15.6 25 ZnS 半导体→导体 电阻变化 Block, 1978 18.3 25 GaAs 半导体→导体 电阻变化 Suzuki et al., 1981 22 25 GaP 半导体→导体 电阻变化 Piermarini and Block, 1975 表 2 高温压力标定常用材料及其相变类型和压力(Ito, 2007)
Table 2. Some phase transitions as pressure calibrants at high temperature
压力(GPa) 温度(℃) 材料 相变类型 标定方法 文献 3.2 1 200 SiO2 石英→柯石英 淬火/ 可逆 Bose and Ganguly, 1995 4.8~5.8 800~1 200 Fe2SiO4 α→γ 原位X射线衍射 Yagi et al., 1987 6.2~5.9 900~1 200 CaGeO3 石榴石→钙钛矿 原位X射线衍射 Susaki et al., 1985 8.7~10.1 1 300~1 530 SiO2 柯石英-斯石英 原位X射线衍射 Zhang et al., 1996 12.2~14.3 1 000~1 400 Mg2SiO4 α→β 原位X射线衍射 Morishima et al., 1994 14.2~15.5 1 300~1 600 Mg2SiO4 α→β 原位X射线衍射 Katsura et al., 2004 16.5 1 400 MgSiO3 辉石→β+斯石英 淬火 Gasparik, 1989 15.7→17.4 800~1 000 Mg2SiO4 β→γ 原位X射线衍射 Suzuki et al., 2000 19→20.8 1 200~1 600 Mg2SiO4 β→γ 淬火 Katsura and Ito, 1989 24.8→23.1 1 000~1 600 Mg2SiO4 γ→钙钛矿+方镁石 淬火 Ito and Takahashi, 1989 表 3 金属铋结构相变引起的体积和电阻的相对改变量及对应的压力(Yoneda and Endo, 1980)
Table 3. Relative changes in volume and resistance of bismuth caused by structure transitions
Bi Ⅰ-Ⅱ Bi Ⅱ-Ⅲ Bi Ⅲ-Ⅴ 体积相对改变量(ΔV/V) 1 0.69% 0.32% 电阻相对改变量(ΔR/R) 1 0.77% 0.23% 对应压力(GPa) 2.55 2.7 7.7 表 4 高温压力标定实验条件和结果
Table 4. Experimental conditions and results of high temperature pressure calibration
实验编号 负载(psi) 温度(℃) 时间(h) 起始物质 产物 R004 1 400 1 200 1.5 SiO2 柯石英 R006 1 200 1 200 1.5 SiO2 石英 R007 1 300 1 200 1.5 SiO2 柯石英 注:1psi=6.895 kPa. -
[1] Ai, Y.S., Zheng, T.Y., Xu, W.W., et al., 2003. A complex 660 km discontinuity beneath Northeast China. Earth and Planetary Science Letters, 212: 63-71. doi: 10.1016/S0012-821X(03)00266-8 [2] Aubaud, C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31, L20611. doi: 10.1029/2004GL021341 [3] Bean, V.E., Akimoto, S., Bell, P.M., et al., 1986. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B&C, 139-140: 52-54. doi: 10.1016/0378-4363(86)90521-8 [4] Birch, F., 1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2): 227-286. doi: 10.1029/JZ057i002p00227 [5] Block, S., 1978. Round-robin study of the high pressure phase transition in ZnS. Acta Crystallographica, A34(Suppl. ): 316. [6] Bose, K., Ganguly, J., 1995. Quartz-coesite transition revisited; reversed experimental determination at 500-1 200 degrees C and retrieved thermochemical properties. American Mineralogist, 80(3-4): 231-238. doi: 10.2138/am-1995-3-404 [7] Dasgupta, R., Hirschmann, M.M., 2006. Melting in the earth's deep upper mantle caused by carbon dioxide. Nature, 440: 659-662. doi: 10.1038/nature04612 [8] Deuss, A., Woodhouse, J., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in earth's mantle. Science, 294(5541): 354-357. doi: 10.1126/science.1063524 [9] Evans, R.L., Tarits, P., Chave, A.D., et al., 1999. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science, 286: 752-756. doi: 10.1126/science.286.5440.752 [10] Fei, Y.W., 2002. Phase transition in the earth's mantle and mantle mineralogy. In: Zhang, Y.X., Yin, A., eds., Structure, evolution and dynamics and the earth. High Education Press, Beijing, 49-90 (in Chinese). [11] Fei, Y., Bertka, C.M., 1999. Phase transitions in the Earth's mantle and mantle mineralogy. In: Fei, Y., Bertka, C.M., Mysen, B.O., eds., Mantle petrology: field observations and high pressure experimentation. Mysen, Spec. Publ., 6: 189-207. [12] Fei, Y., Van Orman, J., Li, J., et al., 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109, B02305, doi: 10.1029/2003JB002562 [13] Frost, D.J., Poe, B.T., Trønnes, R.G., et al., 2004. A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144: 507-514. doi: 10.1016/j.pepi.2004.03.003 [14] Gasparik, T., 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102(4): 389-405. doi: 10.1007/BF00371083 [15] Gasparik, T., 1990. Phase relations in the transition zone. Journal of Geophysical Research, 15(B10): 15751-15769. doi: 10.1029/JB095iB10p15751 [16] Getting, I.C., 1998. New determination of the bismuth Ⅰ-Ⅱ equilibrium pressure: a proposed modification to the practical pressure scale. Metrologia, 35: 119-132. doi: 10.1088/0026-1394/35/2/7 [17] Gu, Y.J., Lerner-Lam, A.L., Dziewonski, A.M., et al., 2005. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth and Planetary Science Letters, 232(3-4): 259-272. doi: 10.1016/j.epsl.2005.01.019 [18] Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451: 814-817. doi: 10.1038/nature06551 [19] Irifune, T., Ringwood, A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science Letters, 117(1-2): 101-110. doi: 10.1016/0012-821X(93)90120-X [20] Irifune, T., Ringwood, A.E., Hibberson, W.O., 1994. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126(4): 351-368. doi: 10.1016/0012-821X(94)90117-1 [21] Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986. The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2): 245-256. doi: 10.1016/0012-821X(86)90165-2 [22] Ito, E., 2007. Theory and practice-multianvil cells and high-pressure experimental methods. Treatise on Geophysics, 2: 197-229. doi: 10.1016/B978-044452748-6/00036-5 [23] Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8): 10637-10646. doi: 10.1029/JB094iB08p10637 [24] Jin, Z.M., 1997. The progress and perspectives of high-T and high-P experimental study in China. Chinese Journal of Geophysics, 40(Suppl. I): 70-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1997S1008.htm [25] Katsura, T., Ito, E., 1989. The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: precise determination of stability of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94(B11): 15663-15670. doi: 10.1029/JB094iB11p15663 [26] Katsura, T., Yamada, H., Nishikawa, O., et al., 2004. Olivine-wadsleyite transformation in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109(B02209). doi: 10.1029/2003JB002438 [27] Kawai, N., Endo, S., 1970. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments, 41: 1178-1181. doi: 10.1063/1.1684753 [28] Kawai, N., Togaya, M., Onodera, A., 1973. A new device for pressure-vessels. Proceedings of the Japan Academy, 8: 623-626. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Proceedings%20of%20the%20Japan%20Academy&atitle=A%20New%20Device%20for%20Pressure%20Vessels [29] Kind, R., Li, X., 2007. Deep earth structure-transition zone and mantle discontinuities. Treatise on Geophysics, 1: 591-618. doi: 10.1016/B978-044452748-6/00020-1 [30] Liu, L., Zhang, J.F., Green, H.W., et al., 2007. Evidence of former stishovite in metamorphosed sediments: implying subduction to >350 km. Earth and Planetary Science Letters, 263(3-4): 180-191. doi: 10.1016/j.epsl.2007.08.010 [31] Lloyd, E.C., 1971. Accurate characterization of the high-pressure environment. NBS Spec. Publ. , 326: 1-3. http://www.researchgate.net/publication/236365649_Accurate_Characterization_of_the_High-Pressure_Environment [32] McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. doi: 10.1016/j.epsl.2005.02.005 [33] Morishima, H., Kato, T., Suto, M., et al., 1994. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science, 265(5176): 1202-1203. doi: 10.1126/science.265.5176.1202 [34] Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87(4): 454-461. doi: 10.2138/am-2002-0409 [35] Ohtani, E., Irifune, T., Hibberson, W.O., et al., 1987. Modified split-sphere guide block for practical operation of a multiple-anvil apparatus. High Temperatures-High Pressures, 19: 523-529. http://www.researchgate.net/publication/279621765_MODIFIED_SPLIT-SPHERE_GUIDE_BLOCK_FOR_PRACTICAL_OPERATION_OF_A_MULTIPLE-ANVIL_APPARATUS [36] Ono, S., Ohishi, Y., Isshiki, M., Watanuki, T., 2005. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208. doi: 10.1029/2004JB003196 [37] Piermarini, G.J., Block, S., 1975. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Reviews of Scientific Instruments, 46: 973-980. doi: 10.1063/1.1134381 [38] Saikia, A., Frost, D.J., Rubie, D.C., 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869): 1515-1518. doi: 10.1126/science.1152818 [39] Sawamoto, H., 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2 200 ℃: phase stability and properies of tetragonal garnet. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 209-219. doi: 10.1029/GM039p0209 [40] Shearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520 km discontinuity. Nature, 344: 121-126. doi: 10.1038/344121a0 [41] Shearer, P.M., 2000. Upper mantle seismic discontinuities. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph). American Geophysical Union, Washington DC, 115-128. [42] Sleep, N.H., Zahnle, K., 2001. Carbon dioxide cycling and implications for climate on ancient earth. Journal of Geophysical Research, 106(E1): 1373-1399. doi: 10.1029/2000JE001247 [43] Susaki, J., Akaogi, M., Akimoto, S., et al., 1985. Garnet-perovskite transformation in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12(10): 729- 732. doi: 10.1029/GL012i010p00729 [44] Suzuki, A., Ohtani, E., Morishima, H., 2000. In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophysical Research Letters, 27(6): 803-805. doi: 10.1029/1999GL008425 [45] Suzuki, T., Yagi, T., Akimoto, S., 1981. Precise determination of transition pressure of GaAs. Abstr. 22nd High Pressure, Conf. Japan, 8-9. [46] Takahashi, E., 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91(B9): 9367-9382. doi: 10.1029/JB091iB09p09367 [47] Takahashi, E., Ito, E., 1987. Mineralogy of mantle peridotite along a model geotherm up to 700 km depth. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 427-437. doi: 10.1029/GM039p0427 [48] Walker, D., Carpenter, M.A., Hitch, C.M., 1990. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist, 75(9-10): 1020-1028. http://www.researchgate.net/publication/279903818_Some_Simplifications_to_Multianvil_Devices_for_High_Pressures_Experiments [49] Wang, Y.B., 2006. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of earth materials: under high pressure and temperature. Earth Science Frontiers, 13(2): 1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602001.htm [50] Weidner, D.J., Wang, Y., 2000. Phase transformations: implications for mantle structure. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 117: 215-235. doi: 10.1029/GM117p0215 [51] Wu, Y., Fei, Y.W., Jin, Z.M., et al., 2009. The fate of subducted upper continental crust: an experimental study. Earth and Planetary Science Letters, 282(1-4): 275-284. doi: 10.1016/j.epsl.2009.03.028 [52] Wu, Y., Wang, Y.B., Zhang, Y.F., et al., 2012, An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chinese Science Bulletin, 57(8): 894-901. doi: 10.1007/s11434-011-4884-2 [53] Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research, 92(B7): 6207-6213. doi: 10.1029/JB092iB07p06207 [54] Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research, 99(B5): 9401-9414. doi: 10.1029/93JB03205 [55] Ye, K., Cong, B.L., Ye, D.N., 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566 [56] Yoneda, A., Endo, S., 1980. Phase transition in barium and bismuth under high pressure. Journal of Applied Physics, 51(6): 3216-3221. doi: 10.1063/1.328076 [57] Zhang, J.Z., Li, B.S., Utsumi, W., et al., 1996. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23(1): 1-10. doi: 10.1007/BF00202987 [58] Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005. Relict coesite exsolution in omphacite from western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186. doi: 10.2138/am.2005.1587 [59] Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010. Mantle transition zone: an important field in the studies of earth's deep interior. Earth Science Frontiers, 17(3): 90-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201003010.htm [60] 费英伟, 2002. 地幔中的相变和地幔矿物学. 见: 张有学, 尹安, 主编. 地球的结构、演化和动力学. 北京: 高等教育出版社, 49-90. [61] 金振民, 1997. 我国高温高压实验研究和展望. 地球物理学报, 40 (增刊I): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1008.htm [62] 王雁宾, 2006. 地球内部物质性质的原位高温高压研究: 大体积压机与同步辐射源的结合. 地学前缘, 13(2): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602001.htm [63] 周春银, 金振民, 章军锋, 2010. 地幔转换带: 地球深部研究的重要方向. 地学前缘, 17(3): 90-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm