Discovery of Nanhuaian Bimodal Volcanics in Northern Altyn Tagh and Its Tectonic Significance
-
摘要: 北阿尔金恰什坎萨伊沟南口火山岩显双峰式特征, 由变玄武岩和变流纹岩组成.地球化学分析表明变玄武岩源自富集地幔, 上侵过程中遭受地壳混染, 形成于大陆裂谷环境; 而变流纹岩与铝质A型花岗岩特征类似, 为幔源岩浆底侵下地壳部分熔融成因.变流纹岩锆石LA-ICP-MS U-Pb年龄为749.8±4.6 Ma, 代表火山岩的喷发年龄, 为北阿尔金洋的初始裂解事件提供了时代证据; 与北祁连洋初始裂解时代相近, 从洋盆的初始裂解时间证明北阿尔金与北祁连同为一个带."西域板块"新元古代中期岩浆活动与Rodinia超大陆裂解事件密切相关, 与扬子板块周缘岩浆活动有相似性, 可划分为裂解初期与峰期两个阶段.所发现北阿尔金南华纪双峰式火山岩正是Rodinia超大陆裂解峰期岩浆活动的产物.Abstract: The early Paleozoic ophiolite section of Qiashikansayi hollow is located at the segment of Hongliuguo-Lapeiquan ophiolite belt in the North Altyn Tagh Mountains, striking from south to north. The volcanics from the south entrance of the hollow consist of meta-basalts and meta-rhyolites, with typical "double peaks". The geochemistry data show that meta-basalts derived from enriched mantle have suffered from contamination of crust, and were formed in a continental rift setting; Meta- rhyolites are similar to the A-type granite in the composition, resulted from the partial melt of lower crust due to the underplating of mantle-derived magma. Zircon LA-ICP-MS dating of rhyolite yields a U-Pb age of 749.8±4.6 Ma, representing the time of crystallization of the bimodal volcanics, and providing time evidence for the initial breakup of North Altyn Ocean together with the published regional geological reports. There are similar time of initial breakup between North Altyn Ocean and North Qilian Ocean. We suggest that this volcanic action is closely related with the breakup of Rodinia supercontinent.
-
Key words:
- bimodal volcanics /
- continental rift /
- geochemistry /
- geochronology /
- northern Altyn Tagh
-
图 4 恰什坎萨伊沟南华纪火山岩Nb/Y-Zr/TiO2分类图解(底图据Winchester and Floyd, 1977)
Fig. 4. Diagram of Nb/Y-Zr/TiO2 of bimodal volcanic rocks from Qiashikansayi
图 5 恰什坎萨伊沟双峰式火山岩稀土元素分配形式图与微量元素蛛网图
a、b为流纹岩,c、d为玄武岩;OYC-563(Yellowstone)和98-183(Ethopia)流纹岩数据引自Hildreth et al.(1991)和Ayalew and Yirgu(2003);196(Ethopia)玄武岩数据引自Kieffer et al.(2004);球粒陨石、原始地幔数据引自Sun and McDonough(1989)
Fig. 5. Primitive mantle normalized trace elements pattern and chondrite normalized rare earth elements pattern for bimodal volcanic rocks
图 6 玄武岩Ta/Yb-Th/Yb图解(底图据夏林圻等,2007)
Fig. 6. Diagram of Th/Yb-Ta/Yb for basalts
图 7 恰什坎萨伊沟双峰式火山岩构造判别图解(底图据夏林圻等,2007;Förster et al., 1997)
Fig. 7. Diagram of Zr-Zr/Y (a) for basalts and Rb-(Y+Nb) (b) for rhyolites
表 1 恰什坎萨伊沟变流纹岩(TR051-3-2)锆石LA-ICP-MS U-Pb定年结果
Table 1. Zircon LA-ICP-MS U-P isotopic dates of metarhyolite (TR051-3-2) at the Qiashikansayi
Spot Th(10-6) U(10-6) 232Th/238U 207Pb/206Pb err
1σ207Pb/235U err
1σ206Pb/238U err
1σ206Pb/238U
(Ma)err
1σ1 95 174 0.50 0.071 1 0.28 1.208 5 4.72 0.123 4 0.16 750 9 2 65 129 0.45 0.067 2 0.28 1.128 3 4.51 0.122 6 0.19 746 11 3 112 171 0.59 0.070 5 0.25 1.189 7 4.12 0.122 5 0.15 745 9 4 110 183 0.53 0.067 2 0.23 1.142 2 4.06 0.123 0 0.17 748 10 5 402 390 0.92 0.062 8 0.17 1.072 8 2.99 0.123 2 0.14 749 8 6 79 151 0.49 0.066 2 0.26 1.133 5 4.43 0.124 1 0.15 754 9 7 82 171 0.44 0.067 8 0.26 1.140 0 4.18 0.122 8 0.15 747 9 8 111 42 2.38 0.106 7 0.85 0.613 3 4.86 0.044 5 0.14 280 8 9 69 142 0.44 0.067 3 0.26 1.134 3 4.12 0.123 0 0.16 748 9 10 125 203 0.52 0.063 0 0.22 1.104 7 4.01 0.127 0 0.17 771 10 11 75 153 0.42 0.062 3 0.28 1.053 2 4.66 0.122 8 0.17 747 10 12 102 169 0.55 0.065 7 0.23 1.178 5 4.18 0.129 6 0.16 786 9 13 92 165 0.51 0.060 8 0.25 1.049 8 4.16 0.125 0 0.15 759 9 14 62 118 0.52 0.061 7 0.27 1.137 3 5.23 0.122 7 0.18 746 10 15 39 99 0.35 0.067 9 0.34 1.130 7 5.48 0.122 0 0.21 742 12 16 141 206 0.59 0.072 0 0.39 1.239 8 6.42 0.125 0 0.18 759 10 17 87 158 0.50 0.136 8 7.05 2.350 6 121.60 0.124 3 0.14 755 8 18 125 227 0.49 0.062 9 0.22 1.085 7 3.77 0.124 6 0.15 757 9 19 195 262 0.61 0.065 9 0.26 1.098 4 4.30 0.120 3 0.14 732 8 20 73 132 0.49 0.064 9 0.30 1.111 0 4.96 0.123 7 0.17 752 10 表 2 恰什坎萨伊沟双峰式火山岩主量(%)及微量元素(10-6)分析结果
Table 2. Chemical compositions of bimodal volcanic rocks at the Qiashikansayi
样品 TR051-2-2 TR051-2-3 TR051-5-1 TR051-3-2 TR051-4-1 岩性 玄武岩 玄武岩 玄武岩 流纹岩 流纹岩 SiO2 49.96 51.11 52.62 75.46 77.88 TiO2 0.7 1.91 2.28 0.24 0.17 Al2O3 15.35 12.73 11.23 12.45 10.97 Fe2O3 10.26 16.24 18.13 1.37 2.12 MnO 0.19 0.16 0.14 0.02 0.01 MgO 6.67 4.73 3.27 0.67 0.24 CaO 5.95 5.08 3.93 0.91 0.35 Na2O 3.3 2.85 2.93 2.51 0.16 K2O 3.96 2.06 1.47 4.05 6.11 P2O5 0.06 0.16 0.22 0.03 0.02 LOI 3.34 2.73 3.62 1.89 1.59 Total 99.74 99.78 99.86 99.59 99.61 Mg# 57 37 27 49 18 Ba 1004 449 285 1259 1798 Rb 105 71.61 58.03 126 162 Sr 361 145 93.92 54.82 61.6 Y 23.15 42.86 46.82 57.49 51.7 Zr 85.62 166 183 495 366 Nb 12.99 10.42 14.79 45.19 58.14 Th 3.13 6.56 5.54 12.89 15.08 Ga 18.86 19.56 20.64 18.86 17.24 Ni 76.1 18.35 12.33 2.95 10.37 Hf 2.3 4.37 4.86 12.35 9.85 Ta 0.53 0.78 0.95 3.16 4.19 U 0.94 1.68 1.79 2.19 2.07 La 13.04 17.11 21.23 63.5 58.68 Ce 26.97 39.69 46.46 128 120 Pr 3.21 5.27 6.06 15.89 15.3 Nd 12.57 22.18 25.43 59.53 58.44 Sm 2.97 5.72 6.44 10.91 11.63 Eu 0.74 1.59 1.88 2.22 2.6 Gd 3.26 6.62 7.6 9.58 10.16 Tb 0.54 1.08 1.21 1.41 1.53 Dy 3.72 7.35 7.87 9.41 9.48 Ho 0.86 1.63 1.76 2.12 2.02 Er 2.47 4.34 4.99 5.96 5.62 Tm 0.38 0.67 0.74 0.93 0.86 Yb 2.54 4.36 4.89 6.27 5.69 Lu 0.41 0.69 0.77 1 0.9 注:Mg# =[Mg2+/(Mg2++Fe2+(total))]×100. -
[1] Ayalew, D., Yirgu, G., 2003. Crustal contribution to the genesis of Ethiopian plateau rhyolitic ignimbrites: basalt and rhyolite geochemical provinciality. Journal of the Geological Society, London, 160(1): 47-56. doi: 10.1144/0016-764901-169 [2] Che, Z.C., Liu, L., Liu, H.F., et al., 1995. Discovery and occurrence of high-pressure metapelitic rock in Altun mountain area. Chinese Science Bulletin, 40(14): 1298-1301(in Chinese). doi: 10.1360/csb1995-40-14-1298 [3] Deng, X.L., Shu, L.S., Zhu, W.B., et al., 2008. Precambrian tectonism, magmatiam, deformation and geochronology of igneous rocks in the Xingdi fault zone, Xinjiang. Acta Petrologica Sinica, 24(11): 2800-2808(in Chinese with English abstract). [4] Du, Y.S., Zhu, J., Gu, S.Z., 2006. Sedimentary geochemistry and tectonic significance of Ordovician cherts in Sunan, North Qilian Mountains. Earth Science—Journal of China University of Geosciences, 31(1): 101-109 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201252997958.html [5] Förster, H.J., Tischendorf, G., Trumbull, R.B., 1997. An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40(2-4): 261-293. doi: 10.1016/S0024-4937(97)00032-7 [6] Ge, X.H., Liu, J.L., 1999. Formation and tectonic background of the northern Qilian orogenic belt. Earth Science Frontiers, 6(4): 222-229 (in Chinese with English abstract). http://www.researchgate.net/publication/303243813_Formation_and_tectonic_background_of_the_Northern_Qilian_Orogenic_Belt [7] Guo, Z.J., Yin, A., Alexander, R., et al., 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 25: 45-56. doi: 10.1016/j.jseaes.2004.01.016 [8] Guo, Z.J., Zhang, Z.C., Wang, J.J., 1998. Sm-Nd isochron age of the ophiolite belt at the margin of the Altyn Tagh mountains and its tectonic signification. Chinese Science Bulletin, 43(18) : 1981- 1984(in Chinese). doi: 10.1360/csb1998-43-18-1981 [9] Hao, J., Wang, E.Q., Liu, X.H., et al., 2006. Jinyanshan collisional oroginic belt of the early Paleozoic in the Altun mountains: evidence from single zircon U-Pb and 40Ar/39Ar isotopic dating for the arc magmatite and ophiolitic mélange. Acta Petrologica Sinica, 22(11): 2743-2752(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200611011.htm [10] Hildreth, W., Halliday, A.N., Christiansen, R.L., 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone plateau volcanic field. Journal of Petrology, 32(1): 63-138. doi: 10.1093/petrology/32.1.63 [11] Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and shield basalts from Ethiopia: magmas from the African superswell. Journal of Petrology, 45(4): 793-834. doi: 10.1093/petrology/egg112 [12] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371 [13] Li, X.H., Wang, X.C., Li, W.X., et al., 2008. Peteogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: from orogenesis to intracontinental rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804011.htm [14] Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. doi: 10.1016/S0012-821X(99)00240-X [15] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109. doi: 10.1016/S0301-9268(02)00208-5 [16] Liu, L., Che, Z.C., Wang, Y., et al., 1999. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun mountains. Acta Petrologica Sinica, 15(1): 57-64 (in Chinese with English abstract). http://www.oalib.com/paper/1472828 [17] Liu, L., Wang, C., Chen, D.L., et al., 2009. Petrology and geochronology of HP-UHP rocks from the South Altyn Tagh, northwestern China. Journal of Asian Earth Sciences, 35: 232-244. doi: 10.1016/j.jseaes.2008.10.007 [18] Liu, L., Zhang, A.D., Chen, D.L., et al., 2007. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh. Earth Science Frontiers, 14(1): 98-107 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60004-9 [19] Liu, X.H., Deng, J., Sun, X.L., et al., 2010. Geochemistry and tectonic setting of lavas from Shijihe area in western North Qilian Mountains. Earth Science—Journal of China University of Geosciences, 35(6): 959-968 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.110 [20] Lu, S.N., Li, H.K., Chen, Z.H., et al., 2004. Relationship between Neoproterozoic cratons of China and the Rodinia. Earth Science Frontiers, 11(2): 515-523 (in Chinese with English abstract). [21] Lu, S.N., Yu, H.F., Jin, W., et al., 2002. Microcontinents on the eastern margin of Tarim paleocontinent. Acta Petorlogica et Mineralogica, 21(4): 317-326 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254453717.html [22] Lu, S.N., Yu, H.F., Li, H.K., et al., 2009. Precambrian geology in the Central China Orogen (western part). Geological Publishing House, Beijing (in Chinese). [23] Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375(1-4): 261-288. doi: 10.1016/S0040-1951(03)00342-1 [24] Mingram, B., Trumbull, R.B., Littman, S., et al., 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos, 54(1-2): 1-22. doi: 10.1016/Soo24-4937(00)00033-5 [25] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [26] Qi, X.X., Li, H.B., Wu, C.L., et al., 2005a. SHRIMP U-Pb age of zircons from Qashikansayi granodiorite in the northern Alty Tagh mountains and its significations. Chinese Science Bulletin, 50(6): 571-576 (in Chinese). doi: 10.1360/csb2005-50-6-571 [27] Qi, X.X., Wu, C.L., Li, H.B., 2005b. SHRIMP U-Pb age of zircons from Kazisayi granite in the northern Alty Tagh mountains and its significations. Acta Petrologica Sinica, 21(3): 859-866 (in Chinese with English abstract). http://www.researchgate.net/publication/279701884_SHRIMP_U-Pb_age_of_zircons_from_Kazisayi_granite_in_the_northern_Alty_Tagh_mountains_and_its_significations [28] Saunders, A.D., Storey, M., Kent, R.W., et al., 1992. Consequences of plume-lithosphere interactions. In: Storey, B.C., Alabaster, T., Pankhurst, R.J., eds., Magmatism and the causes of continental break-up. Geological Society Special Publication, 68: 41-60. [29] Schandl, E.S., Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629-642. doi: 10.2113/gsecongeo.97.3.629 [30] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [31] Sun, Y., Liu, C.Y., Che, Z.C., 1997. The Proterozoic rift volcanic series in the Lapeiquan area, the Altun mountains and its tectonic significance. Geological Review, 43(1): 17-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199701002.htm [32] Wang, C., Liu, L., Che, Z.C., et al., 2009. Zircon U-Pb and Hf isotopic from the east segment of Tiekelike tectonic belt: constrains on the timing of Precambrian basement at the southwestern margin of Tarim, China. Acta Geological Sinica, 83(11): 1647-1656 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb200911009 [33] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202 [34] Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 [35] Wu, C.L., Yang, J.S., Yao, S.Z., et al., 2005. Characteristics of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong Basin, North Altun, NW China. Acta Petrologica Sinica, 21(3): 846-858 (in Chinese with English abstract). http://www.researchgate.net/publication/279712843_Characteristics_of_the_granitoid_complex_and_its_zircon_SHRIMP_dating_at_the_south_margin_of_the_Bashikaogong_Basin_North_Altun_NW_China [36] Wu, C.L., Yao, S.Z., Zeng, L.S., et al., 2007. Bashikaogong-Simierbulake granitic complex, North Altun, NW China: geochemistry and zircon SHRIMP ages. Science in China (Series D), 37(1): 10-26 (in Chinese). [37] Wu, Y.Z., Li, R.S., Wang, Z., et al., 2007. The attribution of Altyn marginal faults. Earth Science—Journal of China University of Geosciences, 32(5): 662-670 (in Chinese with English abstract). http://www.researchgate.net/publication/287755690_Attribution_of_Altyn_marginal_faults [38] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The discrimination between continental basalt and island arc basalt based on geochemical method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=23722639 [39] Xie, S.W., Gao, S., Liu, X.M., et al., 2009. U-Pb ages and Hf isotopes of detrital zircons of Nanhua sedimentary rocks from the Yangtze gorges: implications for genesis of Neoproterozoic magmatism in South China. Earth Science—Journal of China University of Geosciences, 34(1): 117-126 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.011 [40] Xiu, Q.Y., Yu, H.F., Liu, Y.S., et al., 2007. Geology and zircon U-Pb age of pillow basalt at Qiashikansoy in northern Altun Tagh, W China. Acta Geologica Sinica, 81(6): 886-893 (in Chinese with English abstract). http://www.researchgate.net/publication/287896363_Geology_and_zircon_U-Pb_age_of_pillow_basalt_at_Qiashikansoy_in_northern_Altun_Tagh_W_China [41] Xu, B., Xiao, S.H., Zou, H.B., et al., 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168(3-4): 247-258. doi: 10.1016/j.precamres.2008.10.008 [42] Xu, Z.Q., Yang, J.S., Zhang, J.X., et al., 1999. A comparison between the tectonic units on the two sides of the Altyn sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 73(3): 193-205 (in Chinese with English abstract). http://www.researchgate.net/publication/291852427_A_Comparison_between_the_Tectonic_Units_on_the_Two_Sides_of_the_Altun_Sinistral_Strike-slip_Fault_and_the_Mechanism_of_Lithospheric_Shearing [43] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2004. Recognition of Neoproterzoic ophillite on the northern margin of the Qiandam basin: evidence of the breakup of Rodinia?Geological Bulletin of China, 23(9-10): 892-898 (in Chinese with English abstract). http://www.researchgate.net/publication/313762163_Recognition_of_Neoproterozoic_Ophiolite_on_the_Northern_Margin_of_the_Qaidam_Basin_Evidence_of_the_Breakup_of_Rodinia [44] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2008. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, North Altun, at the northern margin of the Tibetan platean. Acta petroligica Sinica, 24(7): 1567-1584 (in Chinese with English abstract). http://www.oalib.com/paper/1472114 [45] Yu, F.S., Qi, J.F., Wang, C.Y., et al., 2001. Features of the late Proterozoic metamorphic volcanic rocks in the eastern part of the northern Qilian mountains and their tectonic setting. Geotectonica et Metallogenia, 25(1): 74-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200101007&dbcode=CJFD&year=2001&dflag=pdfdown [46] Yu, H.F., Lu, S.N., Liu, Y.S., et al., 2002. Composing of the Altyn Tagh formation-complex and its tectonic signification. Geological Buletin of China, 21(12): 834 - 840 (in Chinese with English abstract). http://www.researchgate.net/publication/286818216_Composing_of_the_Altyn_Tagh_formation-complex_and_its_tectonic_signification [47] Zeng, J.Y., Yang, H.Y., Wan, Y.S., et al., 2006. Finding of Neoproterozoic (~775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: evidence from SHRIMP zircon U-Pb dating. Chinese Science Bulletin, 51(5): 575-581 (in Chinese). doi: 10.1360/csb2006-51-5-575 [48] Zhang, C.L., Li, Z.X., Li, X.H., et al., 2006a. Neoproterozoic bimodal intrusive complex in the southwestern Tarim block, NW China: age, geochemistry and implications for the rifting of Rodinia. International Geology Review, 48(2): 112-128. doi: 10.2747/0020-6814.48.2.112 [49] Zhang, J.X., Yang, J.S., Meng, F.C., et al., 2006b. U-Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam Mountains, western China: new evidence for an early Paleozoic HP-UHP metamorphic belt. Journal of Asian Earth Sciences, 28(2-3): 143-150. doi: 10.1016/j.jseaes.2005.09.017 [50] Zhang, C.L., Li, X.H., Li, Z.X., et al., 2007a. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim block, western China: geochronology, geochemistry and tectonic implications. Precambrian Research, 152: 149-169. doi: 10.1016/j.precamres.2006.11.003 [51] Zhang, J.X., Meng, F.C., Yu, S.Y., et al., 2007b. 40Ar-39Ar geochronology of high-pressure/low-temperature blueschist and eclogite in the North Altyn Tagh and their tectonic implications. Geology in China, 34(4): 558 - 564 (in Chinese with English abstract). [52] Zhang, C.L., Li, Z.X., Li, X.H., et al., 2009a. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim block, NW China: age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 35(2): 167-179. doi: 10.1016/j.jseaes.2009.02.003 [53] Zhang, Z.Y., Zhu, W.B., Shu, L.S., et al., 2009b. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia. Geological Magazine, 146(1): 150-154. doi: 10.1017/S0016756808005839 [54] Zhang, C.L., Yang, D.S., Wang, H.Y., et al., 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim block, NW China: two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19(1): 177-190. doi: 10.1016/j.gr.2010.03.012 [55] Zhang, Q., Zhou, Q.G., 2001. Ophiolite in China. Scientific Publishing House, Beijing (in Chinese). [56] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China. Precambrian Research, 163(3-4): 351-383. doi: 10.1016/j.precamres.2008.01.004 [57] Zong, K.Q., Liu, Y.S., Gao, S., et al., 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: refining constants on the ultra high-pressure metamorphism of the Sulu terrane, China. Chemical Geology, 269: 237-251. doi: 10.1016/j.chemgeo.2009.09.021 [58] 车自成, 刘良, 刘洪福, 等, 1995. 阿尔金山地区高压变质泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298-1301. doi: 10.3321/j.issn:0023-074X.1995.14.015 [59] 邓兴梁, 舒良树, 朱文斌, 等, 2008. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄. 岩石学报, 24(11): 2800-2808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812015.htm [60] 杜远生, 朱杰, 顾松竹, 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学——中国地质大学学报, 31(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601014.htm [61] 葛肖虹, 刘俊来, 1999. 北祁连造山带的形成与背景. 地学前缘, 6(4): 222-229. doi: 10.3321/j.issn:1005-2321.1999.04.026 [62] 郭召杰, 张志诚, 王建君, 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981-1984. doi: 10.3321/j.issn:0023-074X.1998.18.018 [63] 郝杰, 王二七, 刘小汉, 等, 2006. 阿尔金山脉中金雁山早古生代碰撞造山带: 弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据. 岩石学报, 22(11): 2743-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611011.htm [64] 李献华, 王选策, 李武显, 等, 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398. doi: 10.3321/j.issn:0379-1726.2008.04.012 [65] 刘良, 车自成, 王焰, 等, 1999. 阿尔金高压变质岩带的特征及其构造意义. 岩石学报, 15(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.005.htm [66] 刘良, 张安达, 陈丹玲, 等, 2007. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义. 地学前缘, 14(1): 98-107. doi: 10.3321/j.issn:1005-2321.2007.01.009 [67] 刘晓煌, 邓军, 孙兴丽, 等, 2010. 北祁连西段石鸡河地区火山岩地球化学特征及其动力学意义. 地球科学——中国地质大学学报, 35(6): 959-968. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006008.htm [68] 陆松年, 李怀坤, 陈宏志, 等, 2004. 新元古时期中国古大陆与罗迪尼亚超大陆的关系. 地学前缘, 11(2): 515-523. doi: 10.3321/j.issn:1005-2321.2004.02.021 [69] 陆松年, 于海峰, 金巍, 等, 2002. 塔里木古大陆东缘的微大陆块体群. 岩石矿物学杂志, 21(4): 317-326. doi: 10.3969/j.issn.1000-6524.2002.04.003 [70] 陆松年, 于海峰, 李怀坤, 等, 2009. 中央造山带(中-西部)前寒武纪地质. 北京: 地质出版社. [71] 戚学祥, 李海兵, 吴才来, 等, 2005a. 北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义. 科学通报, 50(6): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20050600B.htm [72] 戚学祥, 吴才来, 李海兵, 2005b. 北阿尔金喀孜萨依花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 859-866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503026.htm [73] 孙勇, 刘池阳, 车自成, 1997. 阿尔金山拉配泉地区元古宙裂谷火山岩系及其构造意义. 地质论评, 43(1): 17-24. doi: 10.3321/j.issn:0371-5736.1997.01.003 [74] 王超, 刘良, 车自成, 等, 2009. 塔里木南缘铁克里克构造带东段前寒武纪地层时代的新限定和新元古代地壳再造: 锆石定年和Hf同位素的约束. 地质学报, 83(11): 1647-1656. doi: 10.3321/j.issn:0001-5717.2009.11.009 [75] 吴才来, 杨经绥, 姚尚志, 等, 2005. 北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年. 岩石学报, 21(3): 846-858. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503025.htm [76] 吴才来, 姚尚志, 曾令森, 等, 2007. 北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年. 中国科学(D辑), 37(1): 10-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701001.htm [77] 伍跃中, 李荣社, 王战, 等, 2007. 阿尔金山各边界断裂的归属性. 地球科学——中国地质大学学报, 32(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705011.htm [78] 夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011 [79] 谢士稳, 高山, 柳小明, 等, 2009. 扬子克拉通南华纪碎屑锆石U-Pb年龄、Hf同位素对华南新元古代岩浆事件的指示. 地球科学——中国地质大学学报, 34(1): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901012.htm [80] 修群业, 于海峰, 刘永顺, 等, 2007. 阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄. 地质学报, 81(6): 886-893. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706005.htm [81] 许志琴, 杨经绥, 张建新, 等, 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73(3): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001 [82] 杨经绥, 史仁灯, 吴才来, 等, 2004. 柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据?地质通报, 23(9-10): 892-898. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2009.htm [83] 杨经绥, 史仁灯, 吴才来, 等, 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807014.htm [84] 于福生, 漆家福, 王春英, 等, 2001. 北祁连东段新元古代火山岩的发现及其特征和形成环境. 大地构造与成矿学, 25(1): 74-82. doi: 10.3969/j.issn.1001-1552.2001.01.008 [85] 于海峰, 陆松年, 刘永顺, 等, 2002. "阿尔金山岩群"的组成及其构造意义. 地质通报, 21(12): 834-840. doi: 10.3969/j.issn.1671-2552.2002.12.005 [86] 曾建元, 杨宏仪, 万渝生, 等, 2006. 北祁连山变质杂岩中新元古代(~775 Ma)岩浆活动纪录的发现: 来自SHRIMP锆石U-Pb定年的证据. 科学通报, 51(5): 575-581. doi: 10.3321/j.issn:0023-074X.2006.05.012 [87] 张建新, 孟繁聪, 于胜尧, 等, 2007b. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义. 中国地质, 34(4): 558-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704003.htm [88] 张旗, 周庆国, 2001. 中国蛇绿岩. 北京: 科学出版社.