Mesozoic-Cenozoic Tectonic Evolution of the Kuqa Basin: Evidence from Apatite Fission-Track Data
-
摘要: 通过对库车河剖面14个样品磷灰石裂变径迹的测试, 研究了库车盆地及其源区的构造演化.根据表观年龄和地层年龄关系, 将结果分成8个退火样品和6个碎屑样品.退火样品年龄从北向南从136~93.7 Ma, 记录了构造发育自造山带向盆地扩展的运动样式.其中09dk-6, 09dk-7, 09dk-8和09dk-11未通过X2检验, 分析认为与后期构造活动有关, 分解得到最年轻的年龄组记录了库如力向斜, 捷斯德里克背斜和阿合断层分别在74.4 Ma、24.2 Ma和50.8 Ma的最新一期活动.碎屑磷灰石得到了250 Ma、160 Ma和100 Ma3个明显的静态峰.结合热模拟研究表明, 研究区存在250 Ma、160 Ma、100 Ma和20 Ma四期构造隆升, 是对亚洲南缘多期地体碰撞增生的响应.Abstract: Fourteen samples were collected from the Kuqa River section for apatite fission track analysis in order to investigate the thermal history of the Kuqa Basin and its sedimentary provenance. By comparing the apparent ages of samples with the related strata ages, the samples can be divided into two groups: the annealed group and the detrital group (unreset samples).The AFT ages become younger from 136 Ma to 93.7 Ma from the Tianshan Mountain to the Kuqa Basin, probably recording a basin-ward propagation of the thrust-fold belt. Samples 09dk-6, 09dk-7, 09dk-8 and 09dk-11 failed the X2 test likely due to the subsequent tectonic deformation. The youngest ages extracted from these samples probably record the latest activities of the Kuruli Syncline, Jiesidelike Anticline and the A'ge Fault at 74.4 Ma, 24.2 Ma and 50.8 Ma, respectively. The detrital samples have three peak ages at 250 Ma, 160 Ma and 100 Ma respectively. Thermal history modeling reveals four periods of denudation at 250 Ma, 160 Ma, 100 Ma and 20 Ma in the Kuqa basin and the Tianshan Mountains. The multi-stage denudation is linked to far-field effects resulted from the collision and accretion of terranes along the southern Asian continental margin.
-
Key words:
- the Kuqa basin /
- apatite /
- fission track /
- exhumation /
- tectonic evolution
-
图 2 库车河地质构造略图(a)和A-A'剖面图(b)
Q1x.西域组;(N2-Q1)k.库车组;N2k.库车组;N1k.康村组;N1j.吉迪克组;E2-3s.苏维依组;E1-2km.库姆格列木组;K1bs.巴什基奇克组;K1b.巴西盖组;K1s.舒善河组;K1y.亚格列木组;J2q.恰克马克组;J2k.克孜勒努尔组;J1y.阳霞组;J1a.阿合组;T3t.塔里奇克组;T3h.黄山街组;T2kl.塔里奇克组;T1e.俄霍布拉克组;P1x.小铁里干克群;P3by.比尤勒包谷孜组;09dk-1~ 09dk-27示采样位置
Fig. 2. Geological map of the Kuqa River area (a) and A-A' cross-section (b)
图 6 样品09dk-1、09dk-2、09dk-6、09dk-8和09dk-11的热史模拟
浅灰色区代表“可以接受的”热史拟合曲线集; 深灰色区为“高质量的”热史曲线集; 黑色曲线代表“最佳”热史拟合曲线(Ketcham, 2005)
Fig. 6. Thermal modelling history of samples 09dk-1, 09dk-2, 09dk-6, 09dk-8 and 09dk-11
表 1 库车河剖面样品裂变径迹数据
Table 1. Apatite fission track data of the Kuqa River section
样号 层位 N ρs
(105 cm-2)Ns ρi
(105 cm-2)Ni ρd
(105 cm-2)Nd P(X2)(%) t(Ma) Nt L(μm) A 09dk-1 γ4 29 8.91 1 647 14.20 1 647 11.5 2 862 74.92 126.2±4.7 11 10.873±1.58 09dk-2 P1x 27 10.02 1 213 16.37 1 982 11.4 2 840 17.59 128.1±7.6 46 10.789±1.78 09dk-6 T3t 30 8.23 1 049 13.42 1 711 11.3 2 818 0.00 121.5±8.3 17 11.35±2.049 09dk-7 T3h 31 4.42 925 18.00 3 770 11.2 2 796 0.00 49.7±3.1 09dk-8 J1a 30 6.42 738 14.06 1 615 11.1 2 774 0.00 92.0±6.8 11 12.036±1.58 09dk-11 J1y 30 5.79 762 17.63 2 320 11.0 2 753 0.06 62.7±4.2 8 11.21±1.84 09dk-12 J2q 11 5.80 342 11.59 684 10.9 2 731 56.62 109.1±11.7 09dk-27 K1b 9 5.39 216 13.39 537 12.3 3 065 5.58 88.8±10.1 B 09dk-14 K1y 30 11.51 1 664 13.47 1 947 12.7 3 187 0.01 196.3±11.3 09dk-15 Q1x 32 6.67 1 228 29.25 5 384 12.7 3 170 0.00 51.8±3.9 09dk-21 N1k 30 7.39 1 252 15.65 2 650 12.5 3 135 0.61 104.3±5.2 09dk-22 Q1x 30 7.39 836 16.79 1 899 12.5 3 117 0.00 102.0±7.8 09dk-23 E2-3s 30 8.35 1 123 11.84 1 593 12.4 3 100 3.32 154.5±8.4 09dk-25 E2-3s 30 16.86 2 045 26.29 3 189 12.3 3 082 0.00 140.9±8.5 注:N=样品颗粒数;Nd=铀标准玻璃对应外探测器的诱发径迹条数;Ns=自发径迹条数;Ni =诱发径迹条数;P(X2)为卡方检测的结果;Nt=所测量的围限径迹长度数;ρs.自发径迹密度;ρi.诱发径迹密度;ρd.铀标准玻璃的诱发径迹密度;L=所测量的围限径迹长度. 表 2 砂岩屑样品二项式拟合年龄峰值统计结果
Table 2. Binomial analysis results of detrital samples
样品 层位 颗粒数 P(F) 最佳拟合峰(Ma)及所占比例 P0 P1 P2 09dk-15 Q1x 32 0.01 35.3(46.6%) 58.4(33.3%) 86.1(20.4%) 09dk-22 Q1x 30 0.02 71.8(30.7%) 107.9(65.9%) 445.2(3.4%) 09dk-21 N1k 30 0.00 101.2(95.8%) 250.1(0.34%) 09dk-25 E2-3s 30 0.02 111.7(46.5%) 163.9(47.0%) 256(6.6%) 09dk-23 E2-3s 30 0.00 145.5(88.8%) 234.7(11.2%) 09dk-14 K1y 30 0.02 152.5(32.1%) 216.4(64.6%) 785(3.3%) -
[1] Abdrakhmatov, K.Y., Aldazhanov, S.A., Hager, B.H., 1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of presentday crustal deformation rates. Nature, 384(6608): 450-453. doi: 10.1038/384450a0 [2] Avouac, J.P., Tapponnier, P., Bai, M., et al., 1993. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755-6804. doi: 10.1029/92JB01963 [3] Baldwin, S.L., Harrison, T.M., Burke, K., 1986. Fission track evidence for the source of accreted sandstones, Barbados. Tectonics, 5(3): 457-468. doi: 10.1029/TC005i003p00457 [4] Brandon, M.T., 1992. Decomposition of fission-track grain-age distributions. American Journal of Science, 292: 535-564. doi: 10.2475/ajs.292.8.535 [5] Brandon, M.T., 2002. Decomposition of mixed grain age distributions using Binomfit. On Track, 24: 13-18. [6] Charreau, J., Gilder, S., Chen, Y., et al., 2006. Magnetostratigraphy of the Yaha section, Tarim basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan mountains. Geology, 34(3): 181-184. doi: 10.1130/G22106.1 [7] Dobretsov, N.L., Buslov, M.M., Delvaux, D., et al., 1996. Meso-and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. International Geology Review, 38(5): 430-466. doi: 10.1080/00206819709465345 [8] Du, Z.L., Wang, Q.C., Zhou, X.H., 2007. Mesozoic and Cenozoic uplifting history of the Kuqa-South Tianshan basin-Mountain system from the evidence of apatite fission track analysis. Acta Petrologica et Mineralogica, 26(5): 399-408 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200705003.htm [9] Dumitru, T.A., 1990. Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: consequences of Laramide and post-Laramide shallow-angle subduction. Journal of Geophysical Research, 95(B4): 4925-4941. doi: 10.1029/JB095iB04p04925 [10] Galbraith, R.F., 1990. The radial plot: graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation, Part D. Nuclear Tracks and Radiation Measurements, 17(3): 207-214. doi: 10.1016/1359-0189(90)90036-W [11] Gallagher, K., 1995. Evolving temperature histories from apatite fission-track data. Earth and Planetary Science Letters, 136(3-4): 421-435. doi: 10.1016/0012-821X(95)00197-K [12] Garver, J.I., Brandon, M.T., 1994. Erosional denudation of the British Columbia Coast Ranges as determined from fission-track ages of detrital zircon from the Tofino basin, Olympic Peninsula, Washington. Geological Society of America Bulletin, 106(11): 1398-1412. doi:10.1130/0016-7606(1994)106<1398:EDOTBC>2.3.CO;2 [13] Gleadow, A.J.W., Duddy, I.R., Green, P.F., et al., 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4): 405-415. doi: 10.1007/BF00376334 [14] Green, P.F., Duddy, I.R., Gleadow, A.J.W., et al., 1985. Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nuclear Tracks and Radiation Measurements(1982), 10(3): 323-328. doi: 10.1016/0735-245X(85)90121-8 [15] Green, P.F., Duddy, I.R., Laslett, G.M., et al., 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience Section, 79(2): 155-182. doi: 10.1016/0168-9622(89)90018-3 [16] He, G.Y., Zhao, Q., Li, S.X., et al., 2006. Analysis on Mesozoic prototypes of the Kuqa basin in Tarim, Northwest China. Chinese Journal of Geology, 41(1): 44-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200601005.htm [17] Hendrix, M.S., Graham, S.A., Carroll, A.R., et al., 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan basins, Northwest China. Geological Society of America Bulletin, 104(1): 53-79. doi: 10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2 [18] Huang, B.C., Piper, J.D.A., Peng, S.T., et al., 2006. Magnetostratigraphic study of the Kuche depression, Tarim basin, and Cenozoic uplift of the Tian Shan Range, western China. Earth and Planetary Science Letters, 251(3-4): 346-364. doi: 10.1016/j.epsl.2008.09.020 [19] Hurford, A.J., 1986. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92(4): 413-427. doi: 10.1007/BF00374424 [20] Jia, C.Z., 1997. Structural and petroleum geology of the Tarim basin. Petroleum Press, Beijing (in Chinese). [21] Jia, C.Z., Chen, H.L., Yang, S.F., et al., 2003. Late Cretaceous uplifting process and its geological response in Kuqa depression. Acta Petrolei Sinica, 24(3): 1-5, 15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200303000.htm [22] Ketcham, R.A., Carter, A., Donelick, R, A., et al., 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281 [23] Ketcham, R.A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1): 275. doi: 10.2138/rmg.2005.58.11 [24] Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: III, Extrapolation to geological time scales. American Mineralogist, 84(9): 1235-1255. doi: 10.2138/am-1999-0903 [25] Kowallis, B.J., Heaton, J.S., Bringhurst, K., 1986. Fission-track dating of volcanically derived sedimentary rocks. Geology, 14(1): 19-22. doi: 10.1130/0091-7613(1986)14<19:FDOVDS>2.0.CO;2 [26] Laslett, G.M., Green, P.F., Duddy, I.R., et al., 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology: Isotope Geoscience Section, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1 [27] Li, Z., Wang, D.X., Lin, W., et al., 2004. Mesozoic-Cenozoic clastic composition in Kuqa depression, Northwest China: implication for provenance types and tectonic attributes. Acta Petrologica Sinica, 20(3): 656-666 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200403029.htm [28] Lin, C.S., Liu, J.Y., Zhang, Y.M., et al., 2002. The characteristics of Eogene tectonic sequence stratigraphy and effect on response of foreland tectonic movement of the Palaeogeue Kuqu depression. Science in China (SeriesD), 32(3): 177-183 (in Chinese). [29] Liu, Z.H., Lu, H.F., Jia, C.Z., et al., 1999. The orogeny timing of the Kuqa rejuvenation foreland thrust belt. Earth Science Frontiers, 6(4): 236 (in Chinese). http://www.researchgate.net/publication/285868950_Nature_and_timing_of_the_Kuqa_Cenozoic_structures [30] Liu, Z.H., Lu, H.F., Jia, C.Z., et al., 2000. Orogeny timing and fault-slip rate and their significance to the rejuvenated foreland thrusts belt of Kuche. Petroleum Exploration and Development, 27(1): 12-15(in Chinese with English abstract). [31] Lu, H.F., Chen, C.M., Liu, Z.H., et al., 2000. The structural features and origin of the Kuqa rejuvenation foreland thrust belt. Acta Petrolei Sinica, 21(3): 18-24(in Chinese with English abstract). [32] Marshallsea, S.J., George, A.D., Wyrwoll, K.H., et al., 2000 Mid-Miocene cooling in Hexi corridor-Qilian Shan region, Qinhai-Tibet plateau. In: 9th International conference on fission track dating and thermochronology, Melboume, Australia. [33] Naeser, C.W., 1979. Fission-track dating and geologic annealing of fission tracks. In: Jager, E., Hunziker, J.C., eds., Lectures in isotope geology. Springer-Verlag, Berlin, 154-169. [34] Rahn, M., Seward, D., 2000. How many track lengths do we need? On track (unpublished Newsletter of the International Fission-Track Community), 10, 14-17. [35] Reigber, C., Michel, G.W., Galas, R., et al., 2001. New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters, 191(1-2): 157-165. doi: 10.1016/S0012-821X(01)00414-9 [36] Shu, L.S., Guo, Z.J., Zhu, W.B., et al., 2004. Post-collision tectonism and basin-range evolution in the Tianshan belt. Geological Journal of China Universities, 10(3): 393-404 (in Chinese with English abstract). [37] Sobel, E.R., Oskin, M., Burbank, D., et al., 2006. Exhumation of basement-cored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics, 25(2): C2008. doi: 10.1029/2005TC001809 [38] Tian, Z.J., Song, J.G., 1999. Tertiary structure characteristics and evolution of Kuche foreland basin. Acta Petrolei Sinica, 20(4): 7-13(in Chinese with English abstract). [39] Wang, Y.B., Wang, Y., Liu, X., et al., 2001. Apatite fission-track records of Mesozoic and Cenozoic episodic reactivation of the Tianshan and West Kunlun mountains. Regional Geology of China, 20(1): 95-99 (in Chinese with English abstract). [40] Yin, A., Nie, S., Craig, P., et al., 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17(1): 1-27. doi: 10.1029/97TC03140 [41] Yang, S.F., Chen, H.L., Cheng, X.G., et al., 2003. Cenozoic uplifting and unroofing of southern Tien Shan, China. Journal of Nanjing University(Natural Sciences), 39(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200301001.htm [42] Zhu, W.B., Shu, L.S., Wan, J.L., et al., 2006. Fission-track evidence for the exhumation history of Bogda-Harlik Mountains, Xinjiang since the Cretaceous. Acta Geology Sinica, 80(1): 16-22 (in Chinese with English abstract). [43] 杜治利, 王清晨, 周学慧, 2007. 中新生代库车-南天山盆山系统隆升历史的裂变径迹证据. 岩石矿物学杂志, 26(5): 399-408. doi: 10.3969/j.issn.1000-6524.2007.05.002 [44] 何光玉, 赵庆, 李树新, 等, 2006. 塔里木库车盆地中生代原型分析. 地质科学, 41(1): 44-53. doi: 10.3969/j.issn.1672-0636.2006.01.009 [45] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油出版社, 348-364. doi: 10.3321/j.issn:1671-167X.1997.04.019 [46] 贾承造, 陈汉林, 杨树锋, 等, 2003. 库车坳陷晚白垩世隆升过程及其地质响应. 石油学报, 24(3): 1-5, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200303000.htm [47] 李忠, 王道轩, 林伟, 等, 2004. 库车坳陷中-新生界碎屑组分对物源类型及其构造属性的指示. 岩石学报, 20(3): 656-666. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403029.htm [48] 林畅松, 刘景彦, 张燕梅, 等, 2002. 库车坳陷第三系构造层序的构成特征及其对前陆构造作用的响应. 中国科学(D辑), 32(3): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203000.htm [49] 刘志宏, 卢华复, 贾承造, 等, 1999. 库车再生前陆逆冲带造山运动时间的厘定. 地学前缘, 6(4): 236. doi: 10.3321/j.issn:1005-2321.1999.04.028 [50] 刘志宏, 卢华复, 贾承造, 等, 2000. 库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义. 石油勘探与开发, 27(1): 12-15. doi: 10.3321/j.issn:1000-0747.2000.01.004 [51] 卢华复, 陈楚铭, 刘志宏, 等, 2000. 库车再生前陆逆冲带的构造特征与成因. 石油学报, 21(3): 18-24. doi: 10.3321/j.issn:0253-2697.2000.03.004 [52] 舒良树, 郭召杰, 朱文斌, 等, 2004. 天山地区碰撞后构造与盆山演化. 高校地质学报, 10(3): 393-404. doi: 10.3969/j.issn.1006-7493.2004.03.010 [53] 田作基, 宋建国, 1999. 塔里木库车新生代前陆盆地构造特征及形成演化. 石油学报, 20(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB904.001.htm [54] 王彦斌, 王永, 刘训, 等, 2001. 天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹记录. 中国区域地质, 20(1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200101017.htm [55] 杨树锋, 陈汉林, 程晓敢, 等, 2003. 南天山新生代隆升和去顶作用过程. 南京大学学报(自然科学版), 39(1): 1-8. doi: 10.3321/j.issn:0469-5097.2003.01.001 [56] 朱文斌, 舒良树, 万景林, 等, 2006. 新疆博格达-哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16-22. doi: 10.3321/j.issn:0001-5717.2006.01.002